

# Dipendenza dell'affidabilità strutturale dalle assunzioni iniziali – Analisi di sensitività

Pietro Croce

Dipartimento di Ingegneria Civile e Industriale – Univ. di Pisa

Azioni  $\gamma_F =$ 

$$\gamma_f \gamma_{Sd}$$

γ<sub>f</sub> Aleatorietà dell'azione Incertezza di γ<sub>Sd</sub> Modello – Azioni/sollecitazioni

### Metodo del Fattore Parziale

(semi probabilistico)

$$x_{d} = \frac{x_{k}}{\gamma_{M}}$$

$$\gamma_{M} = \gamma_{m} \gamma_{Rd}$$

$$\gamma_{m} \qquad \gamma_{Rd}$$

$$\gamma_{m} \qquad \gamma_{Rd}$$

$$\gamma_{m} \qquad \gamma_{Rd}$$
Aleatorietà delle Incertezza di modello

Metodi probabilistici

$$x_d = f(\boldsymbol{\mu}, \boldsymbol{\sigma}, \dots)$$



### Relative frequency Density Plot (Shifted Lognormal) - [A1\_792]



Yield strength [MPa]

| β   | 1/P <sub>f</sub> |  |
|-----|------------------|--|
| 2,3 | 93               |  |
| 2,8 | 391              |  |
| 3,3 | 2069             |  |
| 3,8 | 13822            |  |
| 4,3 | 117097           |  |
| 4,8 | 1260512          |  |



#### Distribuzioni normali

$$g(x) = R - E$$

$$\boldsymbol{\beta} = -\boldsymbol{\Phi}^{-1}(\boldsymbol{P}_f)$$

$$e_d$$
 ,  $r_d$ 

$$e_d = \mu_E + \alpha_E \beta \sigma_E$$

$$r_d = \mu_R - \alpha_R \beta \sigma_R$$







## Wind speed

## **Commonly adopted extreme value distributions**



# Wind speed



# Wind speed



Annual maxima of wind speed at Pisa airport weather station

# Wind speed – Pisa airport annual maxima elaboration



# Wind actions



Annual maxima of wind speed at Pisa airport weather station

# Wind speed – Pisa airport annual maxima elaboration



#### JCSS PROBABILISTIC MODEL CODE



### **EXAMPLE APPLICATIONS**

Ton Vrouwenvelder Milan Holicky Jana Markova



$$R = m_R Z_p f_y$$

$$G = a \ b \ t \ \rho_c \ g$$

$$Q = a \ b \ (q_{long} + q_{short})$$

$$W = 2 \ h \ b \ c_a \ c_g \ c_r \ (0.5 \ m_q \ \rho_a \ U^2)$$

 $Z = R - 0.16 m_E h (G + Q + W)$ 

Table 3.1 Probabilistic models for the steel frame example (according to the JCSS Probabilistic Model Code 2001)

| X                  | Designation                     | Distribution  | Mean                   | V        | λ        |
|--------------------|---------------------------------|---------------|------------------------|----------|----------|
| a                  | in plane column distance        | Deterministic | 6 m                    | - C.     | 0        |
| b                  | frame to frame distance         | Deterministic | 5 m                    | <b>S</b> |          |
| h                  | storey height                   | Deterministic | 3 m                    | -        |          |
| t                  | thickness concrete floor slab   | Normal        | 0.20 m                 | 0.03     |          |
| Zp                 | plastic section modulus         | Normal        | $0.0007 m^3$           | 0.02     | 1        |
| fy                 | steel yield stress              | Lognormal     | 300 MPa                | 0.07     | -        |
| g                  | acceleration of gravity         | Deterministic | 10 m/s <sup>2</sup>    |          |          |
| ρο                 | mass density concrete           | Normal        | $2.4 \text{ ton/m}^3$  | 0.04     |          |
| q <sub>long</sub>  | long term live load (sustained) | Gamma         | 0.50 kN/m <sup>2</sup> | 1.15     | 0.2/year |
| q <sub>short</sub> | short term live load (1 day)    | Exponential   | 0.20 kN/m <sup>2</sup> | 1.60     | 1.0/year |
| ρ                  | mass density air                | Deterministic | 0.125kg/m <sup>3</sup> | -        |          |
| c <sub>a</sub>     | aerodynamic shape factor        | Normal        | 1.10                   | 0.12     |          |
| cg                 | gust factor                     | Normal        | 3.05                   | 0.12     |          |
| c <sub>r</sub>     | roughness factor                | Normal        | 0.58                   | 0.15     | 6        |
| u                  | ref wind speed (8 hours)        | Weibull       | 5 m/s                  | 0.60     | 3.0/day  |
| U                  | ref wind speed (one year)       | Gumbel        | 30 m/s                 | 0.10     | 1.0/year |
| m <sub>q</sub>     | model factor wind pressure      | Normal        | 0.80                   | 0.20     |          |
| m <sub>R</sub>     | model factor resistance         | Normal        | 1.00                   | 0.05     |          |
| m <sub>E</sub>     | model factor load effect        | Normal        | 1.00                   | 0.10     |          |



# Cases considered for extreme wind velocity

Gumbel distribution

**3-parameters Weibull distribution** 

GPD

V=0.1 V=0.2



 $\beta$ -W<sub>k</sub>/(G<sub>k</sub>+Q<sub>k</sub>) diagrams for various extreme maxima distributions for wind (V=0.1)



 $\beta$ -W<sub>k</sub>/(G<sub>k</sub>+Q<sub>k</sub>) diagrams for various extreme maxima distributions for wind (V=0.2)

Reliability decreases when the wind action is very high

Reliability depends on the distribution assumed for extreme maxima

Wind pressure model is still an open question (each relevant coefficient needs to be discussion)

# Fundamental combination (ULS)

$$\sum F_{d} = \sum_{i} \gamma_{G,i} G_{k,i} + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j} + (\gamma_{P} P_{k})$$
  
Eqn. 8.20 (formerly 6.10)  
$$\sum F_{d} = \begin{cases} \sum_{i} \gamma_{G,i} G_{k,i} + \gamma_{Q,1} \psi_{0,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j} + (\gamma_{P} P_{k}) \\ \sum_{i} \xi_{i} \gamma_{G,i} G_{k,i} + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j} + (\gamma_{P} P_{k}) \end{cases}$$

Eqns. 8.21 a+b (formerly 6.10 a+b)

# Fundamental combination (ULS)

$$\sum_{i} F_{d} = \begin{cases} \sum_{i} \gamma_{G,i} G_{k,i} + (\gamma_{P} P_{k}) \\ \sum_{i} \xi_{i} \gamma_{G,i} G_{k,i} + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j} + (\gamma_{P} P_{k}) \end{cases}$$

# Eqns. 8.22 a+b (formerly 6.10 a+b mod)

$$\sum F_{d} = \sum_{i} \gamma_{G1,i} G_{1k,i} + \sum_{i} \gamma_{G2,i} G_{2k,i} + \gamma_{Q,1} Q_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{0,j} Q_{k,j} + (\gamma_{P} P_{k})$$

# PT proposal (rejected)

| Rand.<br>Var. | Variable                           | distr | μ    | COV             | $F(x_k)$     |
|---------------|------------------------------------|-------|------|-----------------|--------------|
| F             | MU Concrete                        |       | 1.00 | 0.20            |              |
|               | MU Steel                           |       | 1.00 | 0.10            |              |
| $\theta_{R}$  | MU Timber                          | LogN  | 1.00 | 0.15            | $F(\mu_{X})$ |
|               | MU Masonry                         |       |      | Input Jäger     |              |
|               | MU Soil                            |       | /    | /               |              |
|               | Concrete compressive strength      |       | 1.00 | 0.17            |              |
| L             | Structural steel yielding strength |       | 1.00 | 0.07            |              |
|               | Re-bar yield strength              |       | 1.00 | 0.06            |              |
| _             | Solid timber bending strength      |       | 1.00 | 0.25            |              |
|               | Glulam timber bending strength     |       | 1.00 | 0.15            |              |
|               | Masonry compression                |       |      | Input Jäger     |              |
| Y             | Masonry shear                      | LogN  |      | Input Jäger     | 0.05         |
| Λ             | Soil internal friction             | Login | 1.00 | 0.09            | 0.05         |
|               | Soil drained cohesion              |       | 1.00 | 0.47            |              |
|               | Soil undrained shear strength      |       | 1.00 | 0.38            |              |
|               | Timber bending MOE                 |       | 1.00 | 0.13            |              |
|               | Masonry MOE                        |       |      | Input Jäger     |              |
|               | Steel bending MOE                  |       | 1.00 | 0.02            |              |
|               | Concrete compression MOE           |       | 1.00 | To be completed |              |
|               | Concrete                           |       | 1.00 | 0.05            |              |
|               | Steel                              |       | 1.00 | 0.04            |              |
| $G_{s}$       | Timber                             | Norm  | 1.00 | 0.10            | 0.50         |
|               | Masonry                            |       |      | Input Jäger     |              |
|               | Soil                               |       | 1.00 | 0.10            |              |

| Rand.<br>Var. | Variable                   | distr            | μ                  | COV             | $F(x_k)$                                   |
|---------------|----------------------------|------------------|--------------------|-----------------|--------------------------------------------|
| $G_P$         | Permanent load             | Norm             | 1.00               | 0.10            | 0.50                                       |
| $G_{P}^{*}$   | Permanent load (large COV) | Norm             | 1.00               | 0.20            | 0.95                                       |
|               | MU Wind                    | LogN             | To be<br>completed | 0.35            | 0.78 for Cpc,<br>Mean values for<br>others |
| 0 -           |                            |                  |                    |                 | Mu+sigma for                               |
| $O_Q$         | MU Snow 1                  | LogN             | 1.00               | 0.20 - 0.30     | Cr <sup>a</sup> , mean values for others   |
|               | MU Snow 1                  |                  |                    | 0.35            | mean                                       |
|               | MU Imposed                 | LogN             | 1.00               | 0.10            | Mean value                                 |
|               | Wind pressure              | Gumbel           | 1.00               | 0.25            | 0.98                                       |
| Q             | Snow on ground             | Gumbel           | 1.00               | 0.40            | 0.98                                       |
| (1yr)         | Imposed                    | Gumbel<br>(LogN) | 1.00               | To be completed | 0.98                                       |

Model uncertainty - LogNormal

Two cases:

Mean value 0.35 and 0.51 for wind – 0.20 and 0.28 for snow

$$\alpha_G = \frac{g_{sk}}{g_{sk} + g_{Pk}} \qquad \qquad \alpha_G = \frac{1}{3}; 0.6; 0.8; 1.0$$

 $\alpha_Q = \frac{q_k}{g_{sk} + g_{Pk} + q_k} \qquad \alpha_Q = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8$ 

Design equation according to:

| γ <sub>G</sub> | γα  |
|----------------|-----|
| 1.35           | 1.5 |

Eq. 8.20 (6.10)

| $F_{0}$ 8 21 a+h (6 10 a+h) |                 |                 |      |      |                 |   |
|-----------------------------|-----------------|-----------------|------|------|-----------------|---|
|                             | γ <sub>G</sub>  | γα              | ξ    | Ψ0,1 | Ψ0,2            | 0 |
|                             | 1.35            | 1.5             | 0.85 | 0.6  | 0.7             |   |
| Eq. 8.20 prop               | γ <sub>G1</sub> | γ <sub>G2</sub> | γ    | ′Qw  | γ <sub>Qs</sub> |   |
|                             | 1.203           | 1.213           | 3 1. | 529  | 1.711           |   |

## Eq. 8.20 a+b prop

| γ <sub>G1</sub> | $\gamma_{G2}$ | γ <sub>Qw</sub> | γ <sub>Qs</sub> | کے   | Ψ <sub>0,1</sub> | Ψ <sub>0,2</sub> |
|-----------------|---------------|-----------------|-----------------|------|------------------|------------------|
| 1.221           | 1.229         | 1.516           | 1.675           | 0.85 | 0.6              | 0.7              |

Probability of failure is evaluated for two cases:

1 year and 50 years

Steel

Concrete

Glulam



Steel – Snow – Eq. 6.10



Steel – Snow – Eq. 6.10 a+b



Steel – Snow – MU COV=0.20



Steel – Snow –MU COV 0.20



Steel – Snow – MU COV=0.51



Steel – Snow –MU COV 0.51





Concrete – Snow –MU COV=0.28



Concrete – Snow –MU COV 0.28



Concrete – Wind – Eq. 6.10 a+b prop



Concrete – Wind – MU COV=0.51



Concrete – Wind – MU COV=0.51



Glulam – Snow – MU COV=0.28



Concrete – Snow –MU COV 0.28



Glulam – Wind – MU COV=0.51



Glulam – Wind – MU COV=0.51



Snow – Resulting pdfs



Snow – CDFs



Wind – Resulting pdfs



Wind – Resulting CDFs

# Design equation (eq. 8.20 of prEN1990:2019)

$$\frac{p r_k}{\gamma_M} = (1 - \alpha_Q) \gamma_G g_k + \alpha_Q \gamma_Q q_k \qquad (1)$$

$$\gamma_M = 1.00$$
 (steel);  
 $\gamma_G = 1.35$   
 $\gamma_Q = 1.50$ 

p is a suitable parameter granting that (1) is satisfied  $\alpha_Q$  is a parameter expressing the relative weigth of variable and permanent actions

## Probability of failure

$$P_f = P\left(p \ \theta_R r - \left(\left(1 - \alpha_Q\right)g + \alpha_Q \theta_Q q\right) < 0\right)$$

## Hypotheses

| Random variable                         |                    | Distr.<br>type | Mean<br>(μ) | CO<br>V | Charact<br>Fractile<br>(value) | Charact<br>. Value                 |
|-----------------------------------------|--------------------|----------------|-------------|---------|--------------------------------|------------------------------------|
| Resistance model unc. (steel)           | $\Theta_{R}$       | Logn.          | 1.00        | 0.05    | (µ)                            | $	heta_{{\scriptscriptstyle R},k}$ |
| Mat. property (steel yielding strength) | R                  | Logn.          | 1.00        | 0.07    | $\mu - 2\sigma$                | $r_k$                              |
| Permanent load                          | G                  | Normal         | 1.00        | 0.1     | 0.50                           | $g_k$                              |
| Variable Load model unc.                | $\Theta_{\varrho}$ | Logn.          | 1.00        | 0.30    | $(\mu + \sigma)$               | $	heta_{\!\mathcal{Q},k}$          |
| Variable Load (yearly extreme)          | Q                  | Gumbel         | 1.00        | 0.40    | 0.98                           | $q_k$                              |

## **Considered cases**

- 1 year reference period considering permanent actions and wind actions including variable load model uncertainty  $\theta_0$ ;
- 1 year reference period considering permanent actions and wind actions excluding  $\theta_0$ ;
- 50 years reference period considering permanent actions and wind actions including variable load model uncertainty  $\theta_Q$ ;
- 50 years reference period considering permanent actions and wind actions excluding  $\theta_Q$ .

$$P_f = P\left(p \,\theta_R r - \left(\left(1 - \alpha_Q\right)g + \alpha_Q \theta_Q q\right) < 0\right)$$

Reference values of  $\beta_t$  and  $P_{ft}$ 

Reference value of  $\beta_t$  and  $P_{ft}$  have been determined referring to the following conditions:

$$\min \sum w_i (\beta_i - \beta_t)^2$$
(3)  
$$\min \sum w_{i,j} (\beta_{i,j} - \beta_{tj})^2$$
$$\min \sum w_i (P_{fi} - P_{ft})^2$$
(5)

Different distribution of weights have been considered

Case 1: (basic case)

 $\alpha_Q = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80$ 

subcase 1.1 like case 1 (most refined coverage)

 $\alpha_{O} = 0.20, 0.25, 0.30, 0.35, \dots 0.70, 075, 0.80$ 

**Case 2**: (basic case shifted by -0.1)

 $\alpha_{O} = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70$ 

**Case 3**: (higher influence of permanent loads)

 $\alpha_Q = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55$ 

subcase 3.1 like case 3 (most refined coverage)

 $\alpha_Q = 0.05, 0.10, 0.15, \dots, 0.50, 0.55$ 

**Case 4**: (basic case shifted by +0.05)

 $\alpha_{O} = 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85$ 

**Case 5**: like case 3,  $\alpha_Q = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55$ , with linearly decreasing weighs (relative weights are

3 for  $\alpha_Q = 0.05$ ; 2.5 for  $\alpha_Q = 0.15$ ; 2.0 for  $\alpha_Q = 0.25$ ; 1.5 for  $\alpha_Q = 0.35$ ; 1.0 for  $\alpha_Q = 0.45$ ; 0.5 for  $\alpha_Q = 0.55$ ).

#### Case 1 - 1 year reference period - Permanent load + wind without model uncertainty

|                   | Weight factors                                                                             |             |           |                |             |        |                  |            |             |           |           |              |                |      |           |              |           |       |      |
|-------------------|--------------------------------------------------------------------------------------------|-------------|-----------|----------------|-------------|--------|------------------|------------|-------------|-----------|-----------|--------------|----------------|------|-----------|--------------|-----------|-------|------|
|                   | 0                                                                                          | 0           | 0         | 0              | 1           | 0      | 1                | 0          | 1           | 0         | 1         | 0            | 1              | 0    | 1         | 0            | 1         | 0     | 0    |
| w                 | 0                                                                                          | 0           | 0         | 0              | 0.1428571   | 0      | 0.1428571        | 0          | 0.1428571   | 0         | 0.1428571 | 0            | 0.1428571      | 0    | 0.1428571 | 0            | 0.1428571 | 0     | 0    |
| α <sub>Q</sub>    | 0                                                                                          | 0.05        | 0.1       | 0.15           | 0.2         | 0.25   | 0.3              | 0.35       | 0.4         | 0.45      | 0.5       | 0.55         | 0.6            | 0.65 | 0.7       | 0.75         | 0.8       | 0.85  | 0.9  |
|                   | Target values                                                                              |             |           |                |             |        |                  |            |             |           |           |              |                |      |           |              |           |       |      |
|                   | $\beta_t$ 4.998                                                                            |             |           |                |             |        |                  |            |             |           |           |              |                |      |           |              |           |       |      |
|                   | P <sub>ft</sub> 1.077E-06                                                                  |             |           |                |             |        |                  |            |             |           |           |              |                |      |           |              |           |       |      |
|                   | $\gamma_{\rm G}$ =1.03 $\gamma_{\rm Q}$ =1.67 $\gamma_{\rm G}$ =1.35 $\gamma_{\rm Q}$ =1.5 |             |           |                |             |        |                  |            |             |           |           |              |                |      |           | 5            |           |       |      |
|                   | $\gamma_{c}$                                                                               | = 1.        | 03        |                |             | ν      | n = 1            | .67        |             |           |           | $\alpha_{Q}$ | P <sub>f</sub> |      | β         | $\alpha_{Q}$ | Р         | f     | β    |
|                   | 1 G                                                                                        |             |           |                |             | 7.0    | 2 -              |            |             |           |           | 0.00         | 1.154E-        | 02   | 2.27      | 0.00         | 6.809     | E-07  | 4.83 |
| 24 50-25 00       | 24.00-2                                                                                    | 4 50 23 5   | 50-24:00  | 23.00-23.50    | 22 50-23 00 | 22.00- | 22 50 21 50      | -22.00     | 21.00-21.50 | 20.50-21  | 00        | 0.05         | 5.016E-        | 04   | 3.29      | 0.05         | 3.165     | E-08  | 5.41 |
| 20.00-20.50       | 19.50-2                                                                                    | 20.00 19.0  | 0-19.50   | 18.50-19.00    | 18.00-18.50 | 17.50  | 18.00 17.00      | -17.50     | 16.50-17.00 | 16.00-16. | 50        | 0.10         | 2.238E-        | 05   | 4.08      | 0.10         | 4.914     | E-09  | 5.73 |
| 11.00-11.50       | 10.50-1                                                                                    | 1.00 = 10.0 | 00-10.50  | 9.50-10.00     | 9.00-9.50   | 8.50-9 | .00 8.00-        | 3.50       | 7.50-8.00   | 7.00-7.50 | 00        | 0.15         | 3.234E-        | 06   | 4.51      | 0.15         | 4.870     | E-09  | 5.74 |
| 2.00-2.50         | ■ 6.00-6.<br>■ 1.50-2.                                                                     | 00 = 1.00   | )-1.50    | 0.50-5.50      | 0.00-0.50   | 4.00-4 | .50 3.504        | 1.00       | 3.00-3.50   | 2,50-3.00 |           | 0.20         | 1.263E-        | 06   | 4.71      | 0.20         | 8.097     | 'E-09 | 5.65 |
|                   |                                                                                            |             |           |                |             | _      |                  |            |             |           |           | 0.25         | 6.996E-        | 07   | 4.83      | 0.25         | 1.474     | E-08  | 5.54 |
|                   |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.30         | 4.756E-        | 07   | 4.90      | 0.30         | 3.255     | E-08  | 5.40 |
|                   |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.35         | 3.250E-        | 07   | 4.98      | 0.35         | 6.703     | E-08  | 5.27 |
| -                 |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.40         | 3.213E-        | 07   | 4.98      | 0.40         | 1.277     | 'E-07 | 5.15 |
|                   |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.45         | 2.738E-        | 07   | 5.01      | 0.45         | 2.248     | E-07  | 5.05 |
|                   |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.50         | 2.437E-        | 07   | 5.03      | 0.50         | 3.681     | E-07  | 4.95 |
|                   |                                                                                            |             |           |                |             |        |                  |            |             |           |           | 0.55         | 2.298E-        | 07   | 5.04      | 0.55         | 6.643     | E-07  | 4.84 |
| )2                |                                                                                            |             |           |                |             |        |                  |            |             | 2.        | 5         | 0.60         | 1.944E-        | 07   | 5.07      | 0.60         | 9.529     | E-07  | 4.76 |
| i - B,            |                                                                                            |             | //        |                |             |        |                  |            | 7           | 2.4       |           | 0.65         | 2.143E-        | 07   | 5.06      | 0.65         | 1.506     | E-06  | 4.67 |
| w <sub>i</sub> (β |                                                                                            |             |           |                |             |        |                  |            | 2 2.1       |           |           | 0.70         | 2.164E-        | 07   | 5.05      | 0.70         | 2.245     | E-06  | 4.59 |
| $\sim$            |                                                                                            |             |           |                |             |        |                  | 1          | 1.9<br>8    |           |           | 0.75         | 2.025E-        | 07   | 5.07      | 0.75         | 3.185     | E-06  | 4.51 |
|                   |                                                                                            |             |           |                |             |        |                  | 1.7<br>1.6 | V Q         |           |           | 0.80         | 2.109E-        | 07   | 5.06      | 0.80         | 3.804     | E-06  | 4.48 |
|                   |                                                                                            |             |           |                |             |        | 1.4              |            |             |           |           | 0.85         | 2.067E-        | 07   | 5.06      | 0.85         | 5.002     | E-06  | 4.42 |
| 0.8 0.            | 85 0.9 0                                                                                   | .95 1 1.    | 05 1.1 1. | 15 1.2 1.      | 25 1.3 1.35 | 1.4 14 | 5 <sup>1.3</sup> |            |             |           |           | 0.90         | 1.913E-        | 07   | 5.08      | 0.90         | 6.359     | E-06  | 4.36 |
|                   |                                                                                            |             |           | Υ <sub>G</sub> |             |        |                  |            |             |           |           | 0.95         | 2.010E-        | 07   | 5.07      | 0.95         | 8.805     | E-06  | 4.29 |

**Case 1 - 1 year reference period - Permanent load + wind without model uncertainty** Weight factors

|   |               |      |     |      |           |      |           | - 0 - |           | -    |           |      |           |      |           |      |           |      |     |
|---|---------------|------|-----|------|-----------|------|-----------|-------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----|
|   | 0             | 0    | 0   | 0    | 1         | 0    | 1         | 0     | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 0   |
| w | 0             | 0    | 0   | 0    | 0.1428571 | 0    | 0.1428571 | 0     | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0   |
| α | 0             | 0.05 | 0.1 | 0.15 | 0.2       | 0.25 | 0.3       | 0.35  | 0.4       | 0.45 | 0.5       | 0.55 | 0.6       | 0.65 | 0.7       | 0.75 | 0.8       | 0.85 | 0.9 |
|   |               |      |     |      |           |      |           |       |           |      |           |      |           |      |           |      |           |      |     |
|   |               |      |     |      |           |      |           |       |           |      |           |      |           |      |           |      |           |      |     |
|   | Target values |      |     |      |           |      |           |       |           |      |           |      |           |      |           |      |           |      |     |
|   |               |      |     |      |           |      | 19        | uiscu | values    |      |           |      |           |      |           |      |           |      |     |

|                                           | $\beta_t$                       | 4.998                    |                |                          |      |      |                                      |      |
|-------------------------------------------|---------------------------------|--------------------------|----------------|--------------------------|------|------|--------------------------------------|------|
|                                           | $P_{ft}$                        | 1.077E-06                | γ <sub>G</sub> | =1.05 γ <sub>Q</sub> =1. | 61   | γ    | <sub>g</sub> =1.35 γ <sub>Q</sub> =1 | .5   |
|                                           |                                 |                          | α              | Pf                       | β    | αq   | Pf                                   | β    |
| $\gamma_G = 1.05$                         | $\gamma_Q = 1.6$                | 1                        | 0.00           | 3.644E-03                | 2.68 | 0.00 | 6.809E-07                            | 4.83 |
|                                           | C                               |                          | 0.05           | 1.644E-04                | 3.59 | 0.05 | 3.165E-08                            | 5.41 |
|                                           | <u>2</u>                        |                          | 0.10           | 1.022E-05                | 4.26 | 0.10 | 4.914E-09                            | 5.73 |
| 3D Plot of $-\Phi^{-1}$ ( $\sum w_i(P_f)$ | $F_i - P_{ft}$ ) <sup>-</sup> ) |                          | 0.15           | 2.284E-06                | 4.58 | 0.15 | 4.870E-09                            | 5.74 |
|                                           |                                 |                          | 0.20           | 1.239E-06                | 4.71 | 0.20 | 8.097E-09                            | 5.65 |
|                                           |                                 |                          | 0.25           | 8.496E-07                | 4.79 | 0.25 | 1.474E-08                            | 5.54 |
| 2.50                                      |                                 |                          | 0.30           | 7.538E-07                | 4.81 | 0.30 | 3.255E-08                            | 5.40 |
| 7.30<br>7.20<br>7.10                      |                                 | 7.40-7.50                | 0.35           | 7.034E-07                | 4.82 | 0.35 | 6.703E-08                            | 5.27 |
| 7.00<br>6.90                              |                                 | 7.30-7.30                | 0.40           | 8.125E-07                | 4.80 | 0.40 | 1.277E-07                            | 5.15 |
| 670<br>560                                |                                 | 7.00-7.10                | 0.45           | 8.368E-07                | 4.79 | 0.45 | 2.248E-07                            | 5.05 |
|                                           |                                 | 6806.50                  | 0.50           | 7.788E-07                | 4.80 | 0.50 | 3.681E-07                            | 4.95 |
|                                           |                                 | 6606.70                  | 0.55           | 9.119E-07                | 4.77 | 0.55 | 6.643E-07                            | 4.84 |
| 5.00 × 5.00 × 5.00 × 5.00                 |                                 | #5.0640<br>#540-630      | 0.60           | 9.808E-07                | 4.76 | 0.60 | 9.529E-07                            | 4.76 |
| 5.40<br>5.40<br>5.00                      |                                 | = 620-630<br>= 620-630   | 0.65           | 9.799E-07                | 4.76 | 0.65 | 1.506E-06                            | 4.67 |
| 5.20<br>5.00                              |                                 | *600-6.10                | 0.70           | 1.071E-06                | 4.74 | 0.70 | 2.245E-06                            | 4.59 |
| 22                                        |                                 | #5.80-5.50<br>#5.20.5.20 | 0.75           | 1.280E-06                | 4.70 | 0.75 | 3.185E-06                            | 4.51 |
| 2                                         |                                 | #5605.70<br>#550540      | 0.80           | 1.252E-06                | 4.71 | 0.80 | 3.804E-06                            | 4.48 |
| ra 16                                     |                                 | #540550                  | 0.85           | 1.351E-06                | 4.69 | 0.85 | 5.002E-06                            | 4.42 |
| 24                                        | Ye                              | #520.530<br>#510.530     | 0.90           | 1.397E-06                | 4.69 | 0.90 | 6.359E-06                            | 4.36 |
| 12 0.8 0.85 0.9 0.95 1 1.05               | 1.1 1.15 1.2 1.25 1.            | 3 1.35 1.4 1.45          | 0.95           | 1.608E-06                | 4.66 | 0.95 | 8.805E-06                            | 4.29 |

#### Case 1 - 1 year reference period - Permanent load + wind with model uncertainty

Target values

 $\beta_t \qquad \qquad 3.610$ 

P<sub>ft</sub> 2.638E-04

|                                                             |                                                                                              | γ <sub>G</sub> | =0.88 γ <sub>Q</sub> =1 | .81  | γ <sub>G</sub> | =1.35 γ <sub>Q</sub> =1 | 5    |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------|-------------------------|------|----------------|-------------------------|------|
|                                                             |                                                                                              | αq             | P <sub>f</sub>          | β    | αq             | P <sub>f</sub>          | β    |
| 0.00                                                        | 4.04                                                                                         | 0.00           | 7.324E-02               | 1.45 | 0.00           | 6.809E-07               | 4.83 |
| $\gamma_G = 0.88$                                           | $\gamma_Q = 1.81$                                                                            | 0.05           | 4.495E-03               | 2.61 | 0.05           | 5.318E-08               | 5.32 |
|                                                             |                                                                                              | 0.10           | 3.641E-04               | 3.38 | 0.10           | 2.343E-07               | 5.04 |
|                                                             |                                                                                              | 0.15           | 1.514E-04               | 3.61 | 0.15           | 2.233E-06               | 4.59 |
| 17175 18517 16105 15516 15155                               | 14515 14145 13514 13135 12513 12125 11512<br>08509 108085 107508 107073 108507 105080 105508 | 0.20           | 1.244E-04               | 3.66 | 0.20           | 9.024E-06               | 4.29 |
| •03-035 #045-05 #04-045 #035-04 #03-035 •                   | 025-03 #02-025 #0.15-02 #03-0.15 #0405-0.1 #04005                                            | 0.25           | 1.236E-04               | 3.67 | 0.25           | 2.435E-05               | 4.06 |
|                                                             | -                                                                                            | 0.30           | 1.295E-04               | 3.65 | 0.30           | 4.892E-05               | 3.90 |
|                                                             |                                                                                              | 0.35           | 1.377E-04               | 3.64 | 0.35           | 8.397E-05               | 3.76 |
|                                                             |                                                                                              | 0.40           | 1.471E-04               | 3.62 | 0.40           | 1.265E-04               | 3.66 |
|                                                             |                                                                                              | 0.45           | 1.570E-04               | 3.60 | 0.45           | 1.809E-04               | 3.57 |
|                                                             |                                                                                              | 0.50           | 1.578E-04               | 3.60 | 0.50           | 2.325E-04               | 3.50 |
|                                                             |                                                                                              | 0.55           | 1.682E-04               | 3.59 | 0.55           | 2.865E-04               | 3.44 |
|                                                             | LA LA                                                                                        | 0.60           | 1.691E-04               | 3.58 | 0.60           | 3.579E-04               | 3.38 |
|                                                             | 22                                                                                           | 0.65           | 1.702E-04               | 3.58 | 0.65           | 4.063E-04               | 3.35 |
| T wells                                                     | 2                                                                                            | 0.70           | 1.805E-04               | 3.57 | 0.70           | 4.672E-04               | 3.31 |
|                                                             | 18                                                                                           | 0.75           | 1.814E-04               | 3.57 | 0.75           | 5.426E-04               | 3.27 |
|                                                             | 1.7 Y <sub>0</sub>                                                                           | 0.80           | 1.822E-04               | 3.56 | 0.80           | 6.046E-04               | 3.24 |
|                                                             | 15                                                                                           | 0.85           | 1.831E-04               | 3.56 | 0.85           | 6.468E-04               | 3.22 |
|                                                             | 11                                                                                           | 0.90           | 1.932E-04               | 3.55 | 0.90           | 7.323E-04               | 3.18 |
| 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.2<br>Y <sub>c</sub> | 5 13 1.35 1.4 1.45                                                                           | 0.95           | 1.939E-04               | 3.55 | 0.95           | 7.951E-04               | 3.16 |
|                                                             |                                                                                              |                |                         |      |                |                         |      |

#### Case 1 - 1 year reference period - Permanent load + wind with model uncertainty

Target values

β<sub>t</sub> 3.610

P<sub>ft</sub> 2.638E-04

 $\gamma_G = 0.88 \qquad \qquad \gamma_Q = 1.70$ 

3D Plot of  $-\Phi^{-1}\left(\sum w_i (P_{fi} - P_{ft})^2\right)$ 



| γ <sub>G</sub> = | =0.88 γ <sub>Q</sub> =1 | .70  | $\gamma_{G}$ =1.35 $\gamma_{Q}$ =1.5 |           |      |  |  |  |  |
|------------------|-------------------------|------|--------------------------------------|-----------|------|--|--|--|--|
| $\alpha_{Q}$     | P <sub>f</sub>          | β    | $\alpha_Q$                           | Pf        | β    |  |  |  |  |
| 0.00             | 7.324E-02               | 1.45 | 0.00                                 | 6.809E-07 | 4.83 |  |  |  |  |
| 0.05             | 5.524E-03               | 2.54 | 0.05                                 | 5.318E-08 | 5.32 |  |  |  |  |
| 0.10             | 5.428E-04               | 3.27 | 0.10                                 | 2.343E-07 | 5.04 |  |  |  |  |
| 0.15             | 2.241E-04               | 3.51 | 0.15                                 | 2.233E-06 | 4.59 |  |  |  |  |
| 0.20             | 2.068E-04               | 3.53 | 0.20                                 | 9.024E-06 | 4.29 |  |  |  |  |
| 0.25             | 1.972E-04               | 3.54 | 0.25                                 | 2.435E-05 | 4.06 |  |  |  |  |
| 0.30             | 2.188E-04               | 3.52 | 0.30                                 | 4.892E-05 | 3.90 |  |  |  |  |
| 0.35             | 2.170E-04               | 3.52 | 0.35                                 | 8.397E-05 | 3.76 |  |  |  |  |
| 0.40             | 2.343E-04               | 3.50 | 0.40                                 | 1.265E-04 | 3.66 |  |  |  |  |
| 0.45             | 2.395E-04               | 3.49 | 0.45                                 | 1.809E-04 | 3.57 |  |  |  |  |
| 0.50             | 2.612E-04               | 3.47 | 0.50                                 | 2.325E-04 | 3.50 |  |  |  |  |
| 0.55             | 2.695E-04               | 3.46 | 0.55                                 | 2.865E-04 | 3.44 |  |  |  |  |
| 0.60             | 2.640E-04               | 3.47 | 0.60                                 | 3.579E-04 | 3.38 |  |  |  |  |
| 0.65             | 2.741E-04               | 3.46 | 0.65                                 | 4.063E-04 | 3.35 |  |  |  |  |
| 0.70             | 2.848E-04               | 3.45 | 0.70                                 | 4.672E-04 | 3.31 |  |  |  |  |
| 0.75             | 2.960E-04               | 3.44 | 0.75                                 | 5.426E-04 | 3.27 |  |  |  |  |
| 0.80             | 2.928E-04               | 3.44 | 0.80                                 | 6.046E-04 | 3.24 |  |  |  |  |
| 0.85             | 3.047E-04               | 3.43 | 0.85                                 | 6.468E-04 | 3.22 |  |  |  |  |
| 0.90             | 3.021E-04               | 3.43 | 0.90                                 | 7.323E-04 | 3.18 |  |  |  |  |
| 0.95             | 3.147E-04               | 3.42 | 0.95                                 | 7.951E-04 | 3.16 |  |  |  |  |

#### Case 1 - 50 year reference period - Permanent load + wind without model uncertainty

|                |   |      |     |      |           |      |           | 0    |           |      |           |      |           |      |           |      |           |      |     |  |
|----------------|---|------|-----|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----|--|
|                | 0 | 0    | 0   | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 0   |  |
| w              | 0 | 0    | 0   | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0   |  |
| α <sub>Q</sub> | 0 | 0.05 | 0.1 | 0.15 | 0.2       | 0.25 | 0.3       | 0.35 | 0.4       | 0.45 | 0.5       | 0.55 | 0.6       | 0.65 | 0.7       | 0.75 | 0.8       | 0.85 | 0.9 |  |

Weight factors

Target values

 $\beta_t \qquad 3.521$ 

P<sub>ft</sub> 5.464E-04

 $\gamma_{G} = 0.91$ 

$$\gamma_{0} = 1.80$$



| γg   | =0.91 γ <sub>Q</sub> =1 | .80  | γ <sub>G</sub> =1.35 γ <sub>Q</sub> =1.5 |           |      |  |  |  |  |
|------|-------------------------|------|------------------------------------------|-----------|------|--|--|--|--|
| αq   | Pf                      | β    | α                                        | Pf        | β    |  |  |  |  |
| 0.00 | 7.324E-02               | 1.45 | 0.00                                     | 6.809E-07 | 4.83 |  |  |  |  |
| 0.05 | 1.329E-02               | 2.22 | 0.05                                     | 2.348E-07 | 5.04 |  |  |  |  |
| 0.10 | 2.328E-03               | 2.83 | 0.10                                     | 2.732E-07 | 5.01 |  |  |  |  |
| 0.15 | 6.082E-04               | 3.24 | 0.15                                     | 1.113E-06 | 4.73 |  |  |  |  |
| 0.20 | 3.092E-04               | 3.42 | 0.20                                     | 4.480E-06 | 4.44 |  |  |  |  |
| 0.25 | 2.278E-04               | 3.51 | 0.25                                     | 1.410E-05 | 4.19 |  |  |  |  |
| 0.30 | 2.035E-04               | 3.54 | 0.30                                     | 3.681E-05 | 3.96 |  |  |  |  |
| 0.35 | 1.836E-04               | 3.56 | 0.35                                     | 8.001E-05 | 3.77 |  |  |  |  |
| 0.40 | 1.799E-04               | 3.57 | 0.40                                     | 1.488E-04 | 3.62 |  |  |  |  |
| 0.45 | 1.881E-04               | 3.56 | 0.45                                     | 2.439E-04 | 3.49 |  |  |  |  |
| 0.50 | 1.913E-04               | 3.55 | 0.50                                     | 3.599E-04 | 3.38 |  |  |  |  |
| 0.55 | 1.902E-04               | 3.55 | 0.55                                     | 4.855E-04 | 3.30 |  |  |  |  |
| 0.60 | 2.005E-04               | 3.54 | 0.60                                     | 6.512E-04 | 3.22 |  |  |  |  |
| 0.65 | 2.073E-04               | 3.53 | 0.65                                     | 8.683E-04 | 3.13 |  |  |  |  |
| 0.70 | 2.109E-04               | 3.53 | 0.70                                     | 1.076E-03 | 3.07 |  |  |  |  |
| 0.75 | 2.118E-04               | 3.52 | 0.75                                     | 1.249E-03 | 3.02 |  |  |  |  |
| 0.80 | 2.103E-04               | 3.53 | 0.80                                     | 1.547E-03 | 2.96 |  |  |  |  |
| 0.85 | 2.215E-04               | 3.51 | 0.85                                     | 1.691E-03 | 2.93 |  |  |  |  |
| 0.90 | 2.160E-04               | 3.52 | 0.90                                     | 1.971E-03 | 2.88 |  |  |  |  |
| 0.95 | 2.234E-04               | 3.51 | 0.95                                     | 2.298E-03 | 2.83 |  |  |  |  |

Case 1 - 50 year reference period - Permanent load + wind without model uncertainty Weight factors

|   | 0 | 0    | 0   | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 1         | 0    | 0   |  |
|---|---|------|-----|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----|--|
| w | 0 | 0    | 0   | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0.1428571 | 0    | 0   |  |
| α | 0 | 0.05 | 0.1 | 0.15 | 0.2       | 0.25 | 0.3       | 0.35 | 0.4       | 0.45 | 0.5       | 0.55 | 0.6       | 0.65 | 0.7       | 0.75 | 0.8       | 0.85 | 0.9 |  |

Target values

 $\beta_t \qquad 3.521$ 

P<sub>ft</sub> 5.464E-04

 $\gamma_G = 0.90$   $\gamma_C$ 

$$v_Q = 1.70$$

3D Plot of 
$$-\Phi^{-1}\left(\sum w_i (P_{fi} - P_{ft})^2\right)$$



| γ <sub>G</sub> | =0.90 γ <sub>Q</sub> =1 | .70  | $\gamma_{G}$ =1.35 $\gamma_{Q}$ =1.5 |           |      |  |  |  |
|----------------|-------------------------|------|--------------------------------------|-----------|------|--|--|--|
| αq             | Pf                      | β    | αq                                   | Pf        | β    |  |  |  |
| 0.00           | 7.324E-02               | 1.45 | 0.00                                 | 6.809E-07 | 4.83 |  |  |  |
| 0.05           | 1.754E-02               | 2.11 | 0.05                                 | 2.348E-07 | 5.04 |  |  |  |
| 0.10           | 3.793E-03               | 2.67 | 0.10                                 | 2.732E-07 | 5.01 |  |  |  |
| 0.15           | 1.241E-03               | 3.03 | 0.15                                 | 1.113E-06 | 4.73 |  |  |  |
| 0.20           | 6.633E-04               | 3.21 | 0.20                                 | 4.480E-06 | 4.44 |  |  |  |
| 0.25           | 4.579E-04               | 3.32 | 0.25                                 | 1.410E-05 | 4.19 |  |  |  |
| 0.30           | 4.382E-04               | 3.33 | 0.30                                 | 3.681E-05 | 3.96 |  |  |  |
| 0.35           | 3.887E-04               | 3.36 | 0.35                                 | 8.001E-05 | 3.77 |  |  |  |
| 0.40           | 4.153E-04               | 3.34 | 0.40                                 | 1.488E-04 | 3.62 |  |  |  |
| 0.45           | 4.007E-04               | 3.35 | 0.45                                 | 2.439E-04 | 3.49 |  |  |  |
| 0.50           | 4.144E-04               | 3.34 | 0.50                                 | 3.599E-04 | 3.38 |  |  |  |
| 0.55           | 4.216E-04               | 3.34 | 0.55                                 | 4.855E-04 | 3.30 |  |  |  |
| 0.60           | 4.232E-04               | 3.34 | 0.60                                 | 6.512E-04 | 3.22 |  |  |  |
| 0.65           | 4.514E-04               | 3.32 | 0.65                                 | 8.683E-04 | 3.13 |  |  |  |
| 0.70           | 4.431E-04               | 3.32 | 0.70                                 | 1.076E-03 | 3.07 |  |  |  |
| 0.75           | 4.620E-04               | 3.31 | 0.75                                 | 1.249E-03 | 3.02 |  |  |  |
| 0.80           | 4.771E-04               | 3.30 | 0.80                                 | 1.547E-03 | 2.96 |  |  |  |
| 0.85           | 4.887E-04               | 3.30 | 0.85                                 | 1.691E-03 | 2.93 |  |  |  |
| 0.90           | 4.972E-04               | 3.29 | 0.90                                 | 1.971E-03 | 2.88 |  |  |  |
| 0.95           | 5.029E-04               | 3.29 | 0.95                                 | 2.298E-03 | 2.83 |  |  |  |

#### Case 1 - 50 year reference period - Permanent load + wind with model uncertainty

Target values

 $\beta_t$ 2.451  $\mathsf{P}_{\mathsf{ft}}$ 1.071E-02

$$\gamma_G = 0.87$$



| γ <sub>G</sub> | =0.87 γ <sub>Q</sub> =1. | 83   | $\gamma_{G}$ =1.35 $\gamma_{Q}$ =1.5 |           |      |  |  |  |  |
|----------------|--------------------------|------|--------------------------------------|-----------|------|--|--|--|--|
| $\alpha_{Q}$   | Pf                       | β    | α                                    | Pf        | β    |  |  |  |  |
| 0.00           | 2.912E-01                | 0.55 | 0.00                                 | 3.435E-04 | 3.39 |  |  |  |  |
| 0.05           | 1.687E-02                | 2.12 | 0.05                                 | 9.135E-07 | 4.77 |  |  |  |  |
| 0.10           | 7.004E-03                | 2.46 | 0.10                                 | 1.913E-05 | 4.12 |  |  |  |  |
| 0.15           | 5.370E-03                | 2.55 | 0.15                                 | 1.507E-04 | 3.61 |  |  |  |  |
| 0.20           | 5.118E-03                | 2.57 | 0.20                                 | 5.878E-04 | 3.24 |  |  |  |  |
| 0.25           | 5.485E-03                | 2.54 | 0.25                                 | 1.414E-03 | 2.99 |  |  |  |  |
| 0.30           | 6.132E-03                | 2.50 | 0.30                                 | 2.526E-03 | 2.80 |  |  |  |  |
| 0.35           | 6.212E-03                | 2.50 | 0.35                                 | 4.180E-03 | 2.64 |  |  |  |  |
| 0.40           | 6.873E-03                | 2.46 | 0.40                                 | 5.812E-03 | 2.52 |  |  |  |  |
| 0.45           | 7.040E-03                | 2.46 | 0.45                                 | 7.734E-03 | 2.42 |  |  |  |  |
| 0.50           | 7.075E-03                | 2.45 | 0.50                                 | 1.035E-02 | 2.31 |  |  |  |  |
| 0.55           | 7.370E-03                | 2.44 | 0.55                                 | 1.211E-02 | 2.25 |  |  |  |  |
| 0.60           | 7.884E-03                | 2.41 | 0.60                                 | 1.399E-02 | 2.20 |  |  |  |  |
| 0.65           | 8.096E-03                | 2.40 | 0.65                                 | 1.683E-02 | 2.12 |  |  |  |  |
| 0.70           | 7.966E-03                | 2.41 | 0.70                                 | 1.857E-02 | 2.08 |  |  |  |  |
| 0.75           | 8.446E-03                | 2.39 | 0.75                                 | 2.109E-02 | 2.03 |  |  |  |  |
| 0.80           | 8.540E-03                | 2.38 | 0.80                                 | 2.314E-02 | 1.99 |  |  |  |  |
| 0.85           | 8.725E-03                | 2.38 | 0.85                                 | 2.452E-02 | 1.97 |  |  |  |  |
| 0.90           | 8.487E-03                | 2.39 | 0.90                                 | 2.645E-02 | 1.94 |  |  |  |  |
| 0.95           | 8.812E-03                | 2.37 | 0.95                                 | 2.898E-02 | 1.90 |  |  |  |  |

#### Case 1 - 50 year reference period - Permanent load + wind with model uncertainty

Target values

 $\beta_t$ 2.451  $\mathsf{P}_{\mathsf{ft}}$ 1.071E-02

 $\gamma_{G}=0.87 \quad \gamma_{Q}=1.72$ 

 $\gamma_{\rm G}$ =1.35  $\gamma_{\rm Q}$ =1.5

$$\gamma_G = 0.87$$
  $\gamma_Q = 1.72$   
3D Plot of  $-\Phi^{-1} \left( \sum w_{e} (P_{ee} - P_{ee})^2 \right)$ 

1.2 13

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha_{Q}$ | P <sub>f</sub> | β    | α    | P <sub>f</sub> | β    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------|------|----------------|------|
| (22.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1.2) + (1. | 0.00         | 2.912E-01      | 0.55 | 0.00 | 3.435E-04      | 3.39 |
| 3D Plot of $-\Phi^{-1}\left(\sum w_i(P_{fi}-P_{ft})\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05         | 2.028E-02      | 2.05 | 0.05 | 9.135E-07      | 4.77 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10         | 9.841E-03      | 2.33 | 0.10 | 1.913E-05      | 4.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15         | 7.822E-03      | 2.42 | 0.15 | 1.507E-04      | 3.61 |
| 4.55-4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20         | 7.855E-03      | 2.42 | 0.20 | 5.878E-04      | 3.24 |
| 2 430435<br>445450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25         | 8.287E-03      | 2.40 | 0.25 | 1.414E-03      | 2.99 |
| 4,404,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30         | 9.289E-03      | 2.35 | 0.30 | 2.526E-03      | 2.80 |
| 4.304.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.35         | 9.564E-03      | 2.34 | 0.35 | 4.180E-03      | 2.64 |
| 4.044.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40         | 1.010E-02      | 2.32 | 0.40 | 5.812E-03      | 2.52 |
| 4.004.15<br>#4.054.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.45         | 1.067E-02      | 2.30 | 0.45 | 7.734E-03      | 2.42 |
| 4,004,03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50         | 1.110E-02      | 2.29 | 0.50 | 1.035E-02      | 2.31 |
| 3.3853.90<br>3.853.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55         | 1.125E-02      | 2.28 | 0.55 | 1.211E-02      | 2.25 |
| = 3.893.03<br>= 3.753.80<br>= 3.753.80<br>= 3.753.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.60         | 1.176E-02      | 2.26 | 0.60 | 1.399E-02      | 2.20 |
| 14 3.05370<br>13.65370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.65         | 1.185E-02      | 2.26 | 0.65 | 1.683E-02      | 2.12 |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.70         | 1.217E-02      | 2.25 | 0.70 | 1.857E-02      | 2.08 |
| 15 14 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.75         | 1.271E-02      | 2.24 | 0.75 | 2.109E-02      | 2.03 |
| 1.8 #3.35-3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.80         | 1.268E-02      | 2.24 | 0.80 | 2.314E-02      | 1.99 |
| Y Q 19 2 325330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85         | 1.280E-02      | 2.23 | 0.85 | 2.452E-02      | 1.97 |
| 2.1 B3.15.3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.90         | 1.305E-02      | 2.22 | 0.90 | 2.645E-02      | 1.94 |
| 2.4 16 B3.05-3.10<br>2.4 B3.05-3.10<br>B3.05.3.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95         | 1.342E-02      | 2.21 | 0.95 | 2.898E-02      | 1.90 |
| 9.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                |      |      |                |      |

## Summary of the sensitivity study (50 years reference)

|        |             |      | Wind wit | h model unce  | ertainty 50 | Wind without model uncertainty 50 |             |        |  |  |
|--------|-------------|------|----------|---------------|-------------|-----------------------------------|-------------|--------|--|--|
|        |             |      | year     | s reference p | eriod       | years                             | reference p | eriod  |  |  |
|        |             |      |          | YG, new       | Yo, new     |                                   | YG,new      | Yo,new |  |  |
|        |             | β    | 2.451    | 0.87          | 1.83        | 3.521                             | 0.91        | 1.80   |  |  |
| Case 1 |             | Pit  | 1.07E-02 | 0.87          | 1.72        | 5.46E-04                          | 0.90        | 1.70   |  |  |
| 00501  | Suberco 1.1 | βι   |          |               |             |                                   |             |        |  |  |
|        | Subcase 1.1 | Pitt |          |               |             |                                   |             |        |  |  |
| Case 2 |             | βι   | 2.755    | 0.90          | 2.01        | 3.814                             | 1.01        | 1.89   |  |  |
| CBSE 2 |             | Pit  | 7.41E-03 | 0.90          | 1.80        | 3.25E-04                          | 1.01        | 1.73   |  |  |
|        |             | βι   | 3.114    | 0.99          | 2.16        | 4.086                             | 1.12        | 1.93   |  |  |
| Case 3 |             | Pit  | 4.26E-03 | 0.96          | 1.90        | 1.38E-04                          | 1.11        | 1.72   |  |  |
| 00000  | Subcase 3.1 | βι   |          |               |             | 4.085                             | 1.10        | 1.90   |  |  |
|        | 0000050 5.1 | Pitt |          |               |             | 1.25E-04                          | 1.11        | 1.72   |  |  |
| Case 4 |             | βι   | 2.346    | 0.78          | 1.80        | 3.405                             | 0.94        | 1.72   |  |  |
| Case 4 |             | Pitt | 1.26E-02 | 0.85          | 1.70        | 6.62E-04                          | 0.85        | 1.70   |  |  |
| Case 5 |             | βι   | 3.289    | 0.99          | 2.36        | 4.392                             | 1.19        | 1.88   |  |  |
|        |             | Pitt | 4.47E-03 | 0.95          | 1.90        | 6.08E-05                          | 1.15        | 1.79   |  |  |

# Summary of the sensitivity study (1 year reference)

|        |             |      | Wind with | model un | certainty 1          | Wind without model uncertainty |       |         |  |  |
|--------|-------------|------|-----------|----------|----------------------|--------------------------------|-------|---------|--|--|
|        |             |      | year r    | eference | period               | 1 year reference period        |       |         |  |  |
|        |             |      |           | YG, new  | $\gamma_{\rm Q,new}$ |                                | YGnew | Yq, new |  |  |
|        |             | β    | 3.610     | 0.88     | 1.81                 | 4.998                          | 1.08  | 1.67    |  |  |
| Case 1 |             | Pitt | 2.64E-04  | 0.88     | 1.70                 | 1.08E-06                       | 1.05  | 1.61    |  |  |
| Case 1 | Subcasa 1.1 | βι   | 3.594     | 0.87     | 1.83                 |                                |       |         |  |  |
|        | Subcase I.I | Pitt | 2.59E-04  | 0.88     | 1.71                 |                                |       |         |  |  |
| Case 2 |             | βι   | 3.868     | 0.94     | 1.98                 | 5.177                          | 1.15  | 1.68    |  |  |
| Case 2 |             | Pitt | 1.78E-04  | 0.96     | 1.74                 | 5.34E-07                       | 1.16  | 1.62    |  |  |
|        |             | βι   | 4.123     | 1.06     | 2.10                 | 5.307                          | 1.27  | 1.62    |  |  |
| Case 3 |             | Pitt | 9.64E-05  | 1.06     | 1.81                 | 1.68E-07                       | 1.30  | 1.61    |  |  |
| 0050.5 | Subcasa 3.1 | βι   |           |          |                      |                                |       |         |  |  |
|        | 5000856 5.1 | Pitt |           |          |                      |                                |       |         |  |  |
| Case 4 |             | βι   | 3.524     | 0.76     | 1.80                 | 4.9                            | 1.11  | 1.63    |  |  |
| Case 4 |             | Pitt | 3.10E-04  | 0.85     | 1.70                 | 1.52E-06                       | 1.00  | 1.61    |  |  |
| Case 5 |             | βι   | 4.426     | 1.16     | 2.28                 | 5.431                          | 1.30  | 1.60    |  |  |
| Case J |             | Pitt | 4.81E-05  | 1.06     | 2.01                 | 7.56E-08                       | 1.31  | 1.63    |  |  |

## Conclusions

- Target reliability and then the solution is strongly influenced on the considered cases and on the model uncertainty;
- shifting the considered  $\alpha_0$  window results vary (even taking into account different number of subintervals can have some effect) for the same case, partial factors  $\gamma_0$  "calibrated" referring to  $\beta$  and partial factors calibrated referring to P<sub>f</sub> can differ up to 0.3 - 0.4, while  $\gamma_G$  factors look very close due to small COV and no model uncertainty ; In general,  $\gamma_0$  values calibrated referring to P<sub>f</sub> are smaller and less sensitive to model uncertainty than those calibrated with respect  $\beta$ The  $-\Phi^{-1}\left(\sum w_i (P_{fi} - P_{ft})^2\right)$  surfaces are characterized by extensive plateau indicating that the region of optimal solutions in terms of probability of failure is much more wide than crudely indicated by the maximum;

## Conclusions

- Considering one variable action characterized by high COV and high model uncertainty and one permanent action characterized by small COV could lead to capricious results: in effect, surprisingly, increasing the relevance (case 3) or the relative weights (case 5) of permanent loads results in a moderate increase of  $\gamma_G$  and in a much more evident increase of  $\gamma_Q$ ;
- Since the calibration tends to uniform the calculated reliability, it increases the reliability in the region where  $\alpha_Q$  is high and it reduces the reliability in the region where  $\alpha_Q$  is low. But, comparing the figures before and after the calibration, it is evident that the decrease of the reliability in region where permanent actions dominates could be unacceptable. In addition, it should be considered that permanent actions are always present and that structures sensitive to them cannot rely on hidden safety.

## Conclusions

Hidden safety resources are often invoked to justify the apparent reduced reliability of structures whose design is dominated by variable actions (characterized by high COV). Disregarding hidden safety could affect effective reliability in high  $\alpha_Q$ , but, at present, hidden safety cannot be quantified.

From the engineering point of view, tackling the calibration of partial factors as a pure mathematical challenge could lead to manifestly bizarre results.

As already discussed, in many cases it results  $\gamma_G < 1$ , especially when model uncertainty dominates; clearly, such finding cannot be accepted.

The procedure, if not accompanied by sound engineering judgement, could lead in a very wrong direction: paradoxically, the effect of an increase of the uncertainty is not only, as expected, an increase of  $\gamma_Q$ , but also a parallel, even relatively more pronounced, decrease of  $\gamma_G$ .

## Grazie per l'attenzione