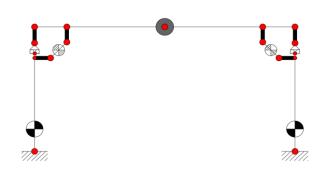
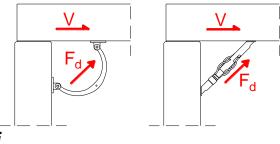
fib/CNI International Seminar on Precast Concrete in Seismic Regions and International Perspectives 29 settembre 2022

"Utilizzo di dissipatori sismici per il miglioramento sismico di edifici industriali"

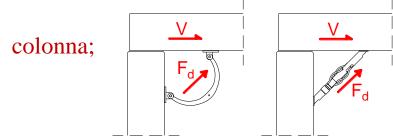

Paolo Riva


Dipartimento di Ingegneria e Scienze Applicate Università degli Studi di Bergamo paolo.riva@unibg.it

DISSIPATORI SISMICI

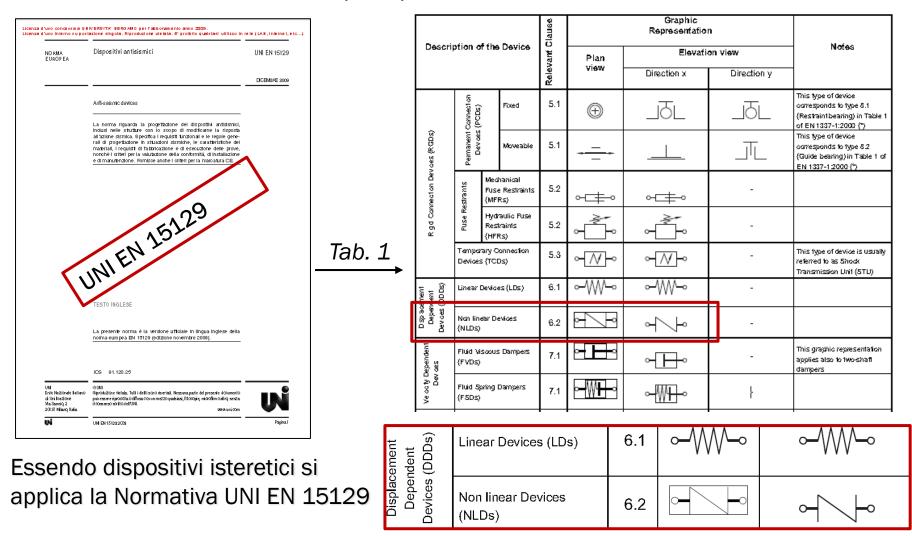
- Descrizione dispositivi dissipativi non lineari
 - Dispositivo Biemme: Stabilflex
 - Dispositivo Edilmatic: Edil TP
- Procedura di calcolo
 - Stima preliminare degli spostamenti attesi
 - Criterio di dimensionamento
 - Verifica con analisi statica e/o dinamica non lineare
 - Modellazione a elementi finiti
- Esempio di calcolo

DESCRIZIONE DISPOSITIVI:


Biemme S.r.I. (Stabilflex) & Edilmatic S.r.I. (Edil TP)

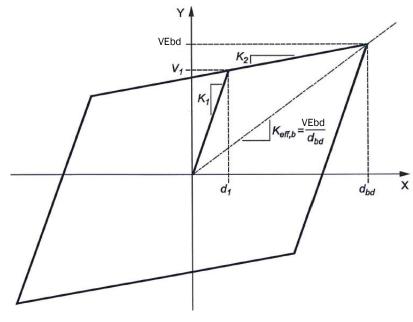
- Definizione delle caratteristiche principali (in accordo alla UNI EN 15129);
- Definizione della geometria;
- Modellazione FEM con software Abaqus.

La risposta sismica delle strutture prefabbricate non progettate per resistere ai carichi sismici può essere migliorata sfruttando la dissipazione energetica di appositi dispositivi di collegamento trave-pilastro.


Obiettivi principali:

- Permettere il trasferimento meccanico delle sollecitazioni sismiche tra trave e

- Consentire l'installazione in edifici esistenti;
- Incrementare la dissipazione di energia della struttura;
- Facilitare le operazioni di montaggio e sostituzione (anche in presenza di impianti).


Definizione delle caratteristiche principali secondo la UNI EN 15129

Definizione delle caratteristiche principali secondo la UNI EN 15129

NLDs: Non Linear devices

ement ndent (DDDs)	Linear Devices (LDs)	6.1	~\\\\~	~\\\\~
Displace Depen Devices (Non linear Devices (NLDs)	6.2	1	<u>2</u>

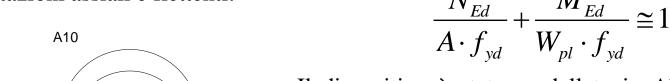
- Carico massimo raggiunto F_{max}
- Spostamento di progetto d_{bd}
- ullet Carico associato allo spostamento di progetto V_{Ebd}
- Rigidezza del 1° ramo (elastico) k₁

$$k_{1} = \frac{\frac{V_{Ebd}}{5} - \frac{V_{Ebd}}{10}}{d\left(\frac{V_{Ebd}}{5}\right) - d\left(\frac{V_{Ebd}}{10}\right)}$$

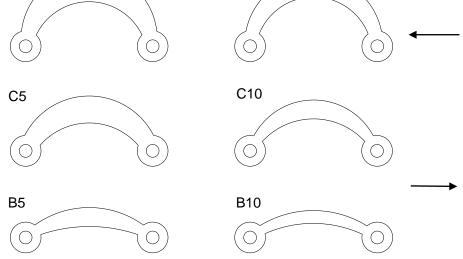
× • Rigidezza del 2° ramo (plastico) k₂

$$k_2 = \frac{V_{Ebd} - V(0.5d_{bd})}{0.5d_{bd}}$$

$$k_{effb} = \frac{V_{Ebd}}{d_{bd}}$$


• Smorzamento efficace ξ_{effb}

$$\xi_{effb} = \frac{W(d_{bd})}{2\pi \cdot V_{Ebd} \cdot d_{bd}}$$

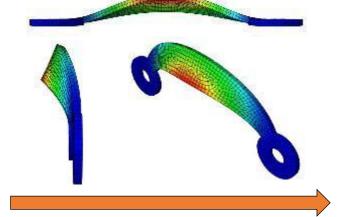

Dispositivo STABILFLEX (Biemme S.r.l.)

a) Definizione della geometria ('crescent moon')

E' stata condotta una progettazione preliminare del dispositivo al fine di ottenere una <u>plasticizzazione uniforme dell'elemento</u>. Esso è stato discretizzato in n sezioni ed è stata condotta un'analisi statica a controllo di spostamento. Per ciascuna sezione sono state ricavate le sollecitazioni assiali e flettenti:

Il dispositivo è stato modellato in Abaqus per <u>verificare l'assenza di fenomeni di instabilità</u> presso-flesso-torsionali.

Questi confronti sono stati condotti al fine di definire una correlazione tra la variazione di curvatura del dispositivo e la forza massima sviluppata da quest'ultimo.


A5

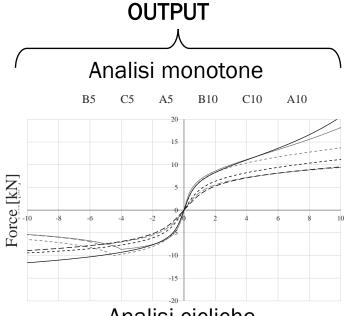
Modellazione (software Abaqus CAE) b)

INPUT

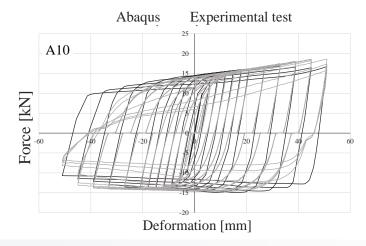
Studio di differenti geometrie e spessori

Legge Ramberg-Osgood

$$E_{\varepsilon} = \sigma + \alpha \left(\frac{|\sigma|}{\sigma_0}\right)^{n-1} \sigma$$


Dove:

ε: deformazione logaritmica


σ: sforzo di Cauchy

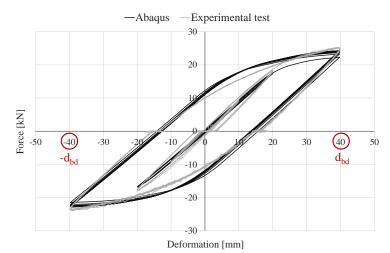
α: coefficiente di rendimento

n: parametro di incrudimento

Analisi cicliche

c) Verifica dei principali parametri secondo la UNI EN 15129 (Prove effettuate in Laboratorio con la macchina di prova universal BRT)

PROVA CICLICA:


- 5 cicli a 0.25·d_{bd}: 10 mm;
- 5 cicli a 0.50·d_{bd}: 20 mm;
- 10 cicli a d_{bd}: 40 mm.

SOVRACCARICO:

$$d_{sovr} = d_{bd}\gamma_b\gamma_x = 40 \cdot 1.1 \cdot 1.5 = 66 \text{ mm}$$

Dove:

 V_b è definito 'Partial factor' V_x è definito 'Reliability factor'

video

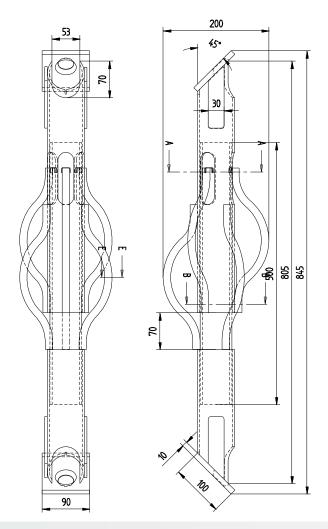
c) Verifica dei parametri principali secondo la UNI EN 15129

		B4(1)					
			15%		15%		10%
# CICLO)	Ki [kN/mm]	Δ(Ki:K3)	Keff [kN/mm]	Δ(Ki:K3)eff	ξeff	Δ(ξi:ξ3)ef
	1+	1,0772		0.56		10.46%	
3	2+	0,2921		0,56		19,46%	
3	1-	0,9539		0.57		10.050/	
	2-	0,2827		0,57		18,85%	
4	1+	1,0916	1,34%	0,61	7,72%	18,25%	6,21%
	2+	0,2882	-1,31%	0,01	7,7270	10,23/0	0,21/6
	1-	0,9405	-1,40%	0,57	1,01%	17,61%	6,57%
	2-	0,3136	10,90%	0,37	1,0170	17,0170	0,3770
5	1+	1,1658	8,22%	0,51	9,89%	19,17%	1,47%
	2+	0,3004	2,85%	0,31		13,1770	
	1-	0,9423	-1,21%	0,58	1,70%	18,63%	1,17%
	2-	0,2873	1,61%	0,30			1,1770
	1+	1,1222	4,17%	0,60	6,99%	18,64%	4,20%
6	2+	0,2964	1,49%	0,00		10,0470	-,2070 -
	1-	0,9486	-0,56%	0,49	14,65%	20,15%	6,88%
	2-	0,3130	10,69%	0, 13	14,0370	20,1370	0,0070
	1+	1,0858	0,80%	0,50	10,59%	19,05%	2,06%
7	2+	0,2876	-1,52%	0,30	_	13,0370	
-	1-	0,9509	-0,31%	0,49	14,66%	18,90%	0,26%
	2-	0,2691	-4,84%	0, .5	2 1,0070	20,5070	0,2070
	1+	1,1618	7,85%	0,60	6,82%	18,41%	5,40%
8	2+	0,3055	4,62%	5,22	=	,, .	- , , .
	1-	0,9408	-1,37%	0,58	0,59%	18,51%	1,80%
	2-	0,2695	-4,68%	5,55			_,
	1+	1,1645	8,11%	0,60	6,67%	18,26%	6,15%
9	2+	0,3037	3,99%	·			
	1-	0,9467	-0,75%	0,57	0,50%	19,01%	0,84%
	2-	0,3009	6,44%	-,-	,	-,	.,
	1+	1,1619	7,86%	0,60	6,88%	18,33%	5,77%
10	2+	0,3064	4,91%	-,		-,	
-	1-	1,0771	12,92%	0,57	0,47%	18,35%	2,66%
	2-	0,3224	14,04%	-,	0,	_,	_,,

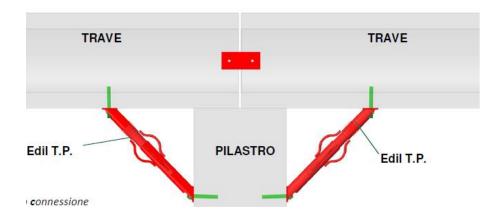
3.1.17

energy dissipating device (EDD)

device which has a large energy dissipation capacity, i.e. which dissipates a large amount of the energy stored during the loading phase. After unloading it normally shows a large residual displacement. A device is classified as EDD if the equivalent viscous damping ξ is greater than 15%.


3.1.29

Non Linear Device (NLD)


anti-seismic device which is characterised by a non linear load-displacement relationship, with a stable behaviour under the required number of cycles and substantial independence from velocity. A device is classified as non linear if either $\xi_{\rm effb}$ is greater than 15% or the ratio $|K_{\rm effb}-K_1|/K_1$ is greater than 20%, where $\xi_{\rm effb}$ and $K_{\rm effb}$ are evaluated at the 3rd cycle with maximum displacement equal to $d_{\rm bd}$.

		DESIGN PARAMETERS
Design Displacement	dы [mm]	40.000
Displacement at yield	dı[mm]	18.600
Design first branch stiffness	k1 [kN/mm]	1.003
Design second branch stiffness	k ₂ [kN/mm]	0.268
Design effective stiffness	keff [kN/mm]	0.595
Design effective damping	ξ _{eff} [%]	18.91 ><u>1</u>5 %
Design axial load at dы	V _{Ebd} [kN]	23.853
keff-k1 /k1 [%]		40.71 >20%

Dispositivo EDIL TP (Edilmatic S.r.l.)

Il dispositivo è costituito da due tubi in acciaio con possibilità di scorrimento l'uno all'interno dell'altro e collegati da sei elementi curvilinei saldati che, deformandosi, consentono di dissipare energia, limitando le azioni trasmesse agli elementi strutturali e permettendo spostamenti relativi tra gli stessi.

La coppia di serraggio prescritta per la tassellatura dei dispositivi è pari a 150 Nm.

<u>Descrizione dispositivi</u>

Dispositivo EDIL TP (Edilmatic S.r.l.)

 $\pm 0.25 \cdot d_{bd}$

 $\pm d_{bd}$

Fine prova

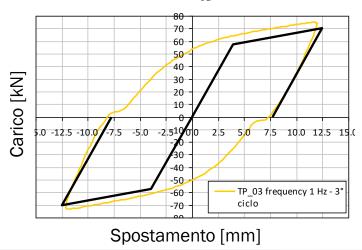
PROVA CICLICA:

- 5 cicli a 0.25·d_{bd}: 3.125 mm;
- 5 cicli a 0.50·d_{bd}: 6.25 mm;
- 10 cicli a d_{bd}: 12.5 mm.

Il campione ha effettuato tutta la storia di spostamento senza raggiungere la rottura, sviluppando un cinematismo ad arco a tre cerniere con deformazione degli archetti e formazione di due cerniere plastiche all'interfaccia con le saldature alle estremità degli stessi e di una cerniera plastica in mezzeria.

Non è stato osservato alcun danneggiamento né dei tubolari né delle estremità in corrispondenza del collegamento con gli afferraggi.

Non sono stati riscontrati problemi particolari per quanto riguarda i bulloni di collegamento.


Dispositivo EDIL TP (Edilmatic S.r.l.)

3.1.17 Energy dissipating device (EDD)

device which has a large energy dissipation capacity, i.e. which dissipates a large amount of the energy stored during the loading phase. After unloading it normally shows a large residual displacement. A device is classified as EDD if the equivalent viscous damping ξ is greater than 15%.

3.1.29 Non Linear Device (NLD)

anti-seismic device which is characterised by a non linear load-displacement relationship, with a stable behaviour under the required number of cycles and substantial independence from velocity. A device is classified as non linear if either $\xi_{\rm effb}$ is greater than 15% or the ratio $|K_{\rm effb}|$ - $K_1|/K_1$ is greater than 20%, where $\xi_{\rm effb}$ and $K_{\rm effb}$ are evaluated at the 3rd cycle with maximum displacement equal to $d_{\rm bd}$.

		,	TRAZIONE		COMPRESSIONE		MEDIA T-C	
		Cam	pioni	Media	Campioni Media		Media	Media
		T_TP_1	T_TP_2		C_TP_1	C_TP_2		
đы	[mm]	12.500	12.500	12.500	-12.500	-12.500	-12.500	12.500
$\mathbf{V}_{\mathtt{Ebd}}$	[kN]	70.496	70.525	70.511	-71.467	-71.445	-71.456	70.983
V _{Ebd} /5	[kN]	14.099	14.105	14.102	-14.293	-14.289	-14.291	14.197
$V_{\text{Ebd}}/10$	[kN]	7.050	7.053	7.051	-7.147	-7.144	-7.146	7.098
d(V _{Ebd} /5)	[mm]	1.229	1.230	1.230	-1.029	-1.036	-1.033	1.131
d(V _{Ebd} /10)	[mm]	0.615	0.615	0.615	-0.515	-0.515	-0.515	0.565
kı	[kN/mm]	11.480	11.468	11.474	13.884	13.706	13.795	12.634
0.5 фы	[mm]	6.250	6.250	6.250	-6.250	-6.250	-6.250	6.250
V(0.5dbd)	[kN]	61.719	62.092	61.905	-61.445	-61.684	-61.564	61.735
k 2	[kN/mm]	1.404	1.349	1.377	1.604	1.562	1.583	1.480
keff	[kN/mm]	5.640	5.642	5.641	5.717	5.716	5.716	5.679
ζeff	[%]	35.528	36.471	36.000	35.045	36.002	35.524	35.762
đ1	[mm]	5.255	5.303	5.279	-4.187	-4.276	-4.231	4.755
V1	[kN]	60.321	60.814	60.567	-58.137	-58.601	-58.369	59.468
k _{eff} -k ₁ /k ₁	[%]	50.872	50.802	50.837	58.822	58.297	58.561	55.054

→ >15%

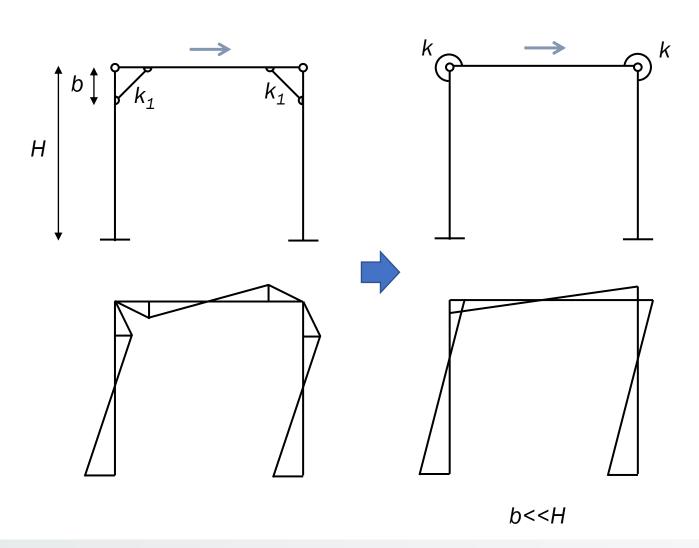
>20%

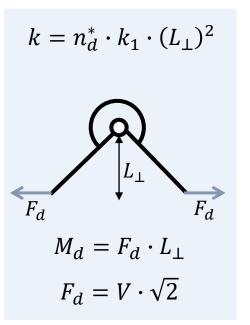
(secondo la UNI EN 15129)

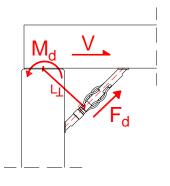
PROCEDURA DI CALCOLO:

- (a) Criterio di dimensionamento per edifici esistenti
- (b) Studio preliminare degli spostamenti attesi
- (c) Verifica

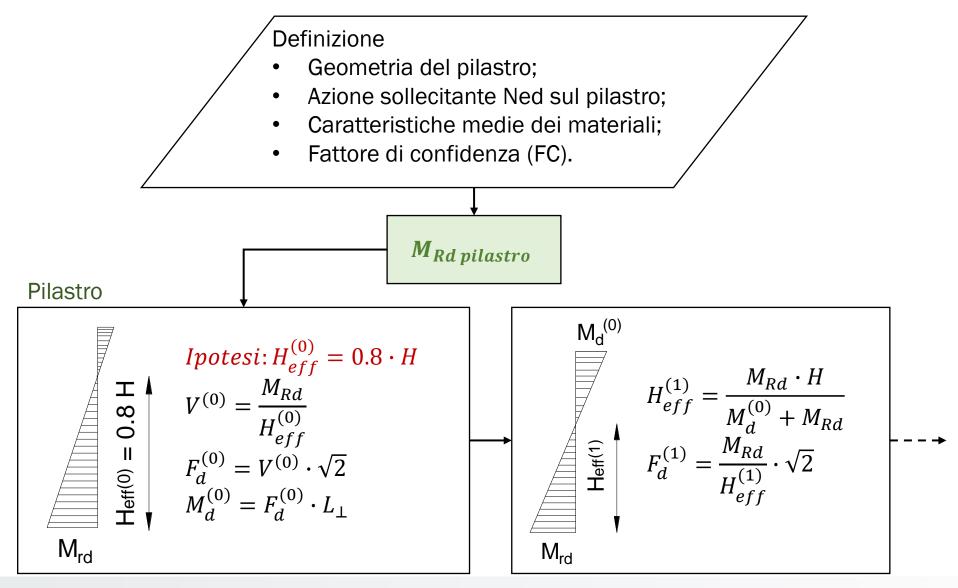
Analisi statica non lineare (Capacity Spectrum)

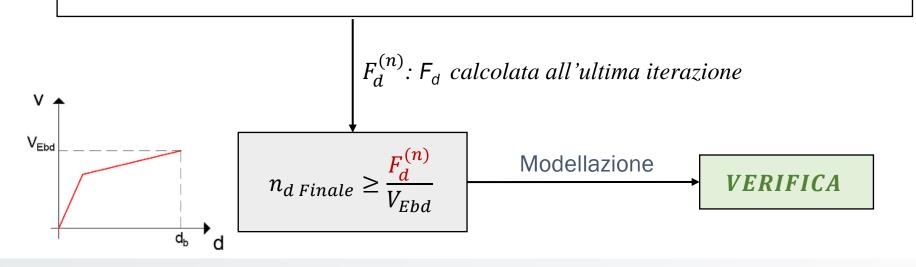

Analisi dinamica non lineare (Time History)


(d) Modellazione a elementi finiti

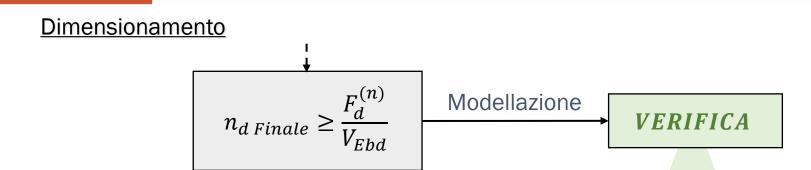

Analisi nel piano

Analisi nel piano ortogonale


<u>Dimensionamento</u>



Dimensionamento



Dimensionamento

Se $F_d^{(0)}$ e $F_d^{(1)}$ sono associati allo stesso numero di dispositivi (calcolato come il rapporto tra $F_d^{(i)}$ e V_{Ebd} al passo i) allora il criterio di convergenza è verificato. In caso contrario si procede con delle ulteriori iterazioni (attraverso il calcolo di $H_{eff}^{(2)} \to F_d^{(2)}$, $H_{eff}^{(3)} \to F_d^{(3)}$,.... $H_{eff}^{(n)} \to F_d^{(n)}$. Il criterio di convergenza è soddisfatto quando $F_d^{(i)}$ e $F_d^{(i-1)}$ sono associati allo stesso numero di dispositivi.

b) Verifica con analisi a elementi finiti

Possono essere utilizzati due metodi di verifica:

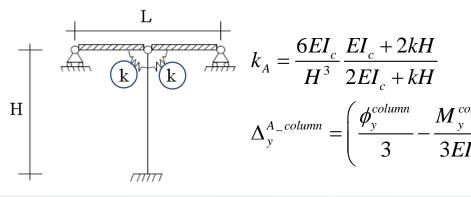
- 1. Analisi statica non lineare: Capacity Spectrum
 - Questo metodo di verifica descritto nella Circolare 21/01/2019, n.7 C.S.LL.PP., considerando lo spettro da normativa a stato limite di salvaguardia della vita, consente di valutare lo smorzamento aggiuntivo associato all'inserimento dei dispositivi e da questo ottenere uno spettro elastico sovra-smorzato da confrontare con quanto ottenuto dalla bi-linearizzazione della curva di Pushover.
- 2. Analisi dinamica non lineare: <u>Time History</u>

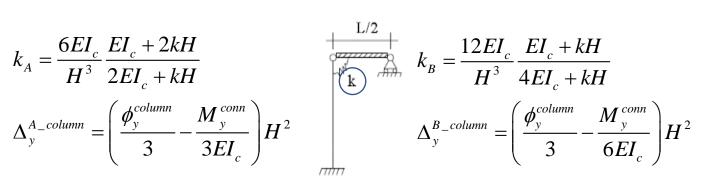
È possibile utilizzare analisi dinamiche non lineari, di tipo Time History, al fine di verificare le nuove prestazioni della struttura al seguito dell'inserimento dei dispositivi di collegamento trave-pilastro. Nello specifico possono essere considerati set di accelerogrammi spettro-compatibili per il sito in esame.

<u>Dimensionamento</u>

Stima preliminare degli spostamenti attesi

STRUTTURA ESISTENTE


Inserimento dispositivi trave-pilastro


Calcolo della rigidezza totale del sistema post-intervento

$$T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$
 Dove m*: massa totale della struttura k*: rigidezza post-intervento

Calcolo k*:

$$k^* = k_A \cdot n_{Pilastri\ centrali}^{\circ} + k_B \cdot n_{Pilastri\ laterali}^{\circ}$$

<u>Dimensionamento</u>

$$k = n_d^* \cdot k_1 \cdot (L_\perp)^2$$
 rigidezza rotazionale

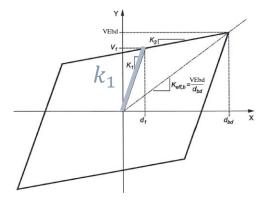
Dove

k₁: rigidezza elastica del singolo dispositivo;

L₁: distanza tra il collegamento del dispositivo e il punto di rotazione;

fib/CNI International Seminar on Precast Concrete in

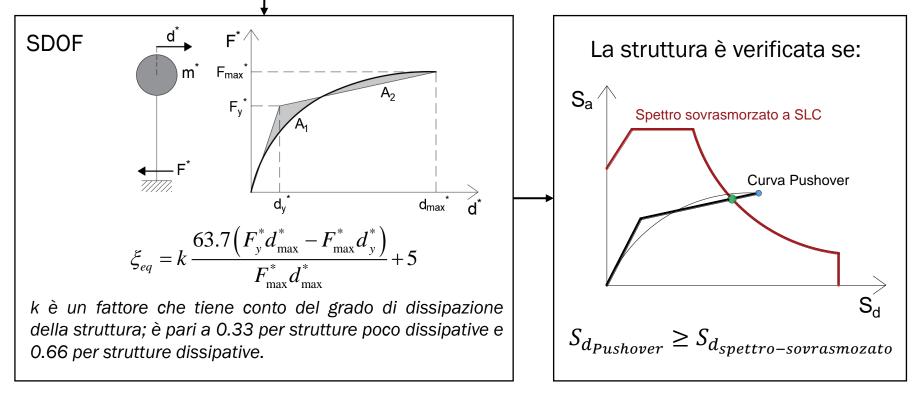
Seismic Regions and International Perspectives


29 settembre 2022

n_d*: numero di dispositivi da utilizzare per il collegamento trave pilastro.

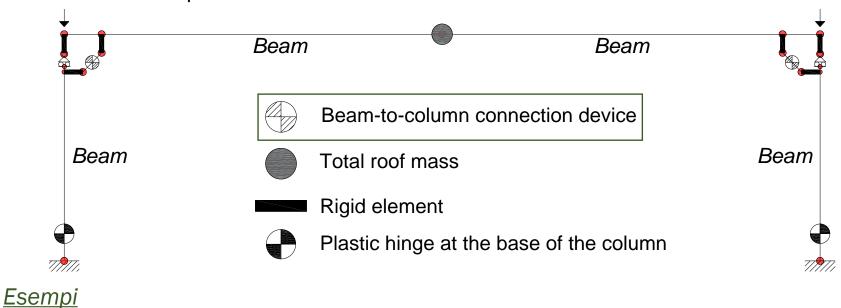
$$k \longrightarrow k^* \longrightarrow T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$

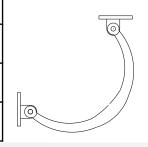
Spettri elastici in spostamento a SLV e SLC



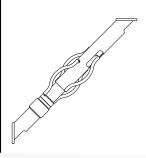
Verifiche

Analisi statica non lineare: Capacity Spectrum


L'analisi non lineare statica consente di determinare la curva di capacità della struttura, espressa dalla relazione F*-d*, in cui F* è il taglio alla base e d* lo spostamento di un punto di controllo. A tal fine si associa al sistema strutturale reale un sistema strutturale equivalente a un grado di libertà.

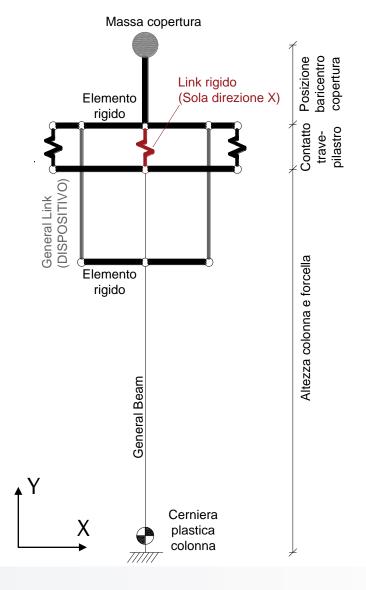

Verifiche

Modellazione a elementi finiti


1. Analisi nel piano:

Dispositivo Stabilflex Legame bilineare elasto-plastico					
F [kN] D [mm]					
18.6	18.6				
23.85 40.0					

Dispositivo Edil TP Legame bilineare elasto-plastico					
F [kN] D [mm]					
57.5	3.94				
70.0 12.5					



Verifiche

Modellazione a elementi finiti

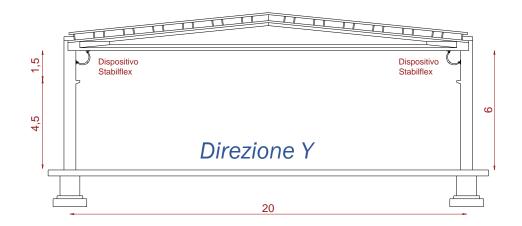
- 2. Analisi nel piano ortogonale:
- La colonna è implementata come elemento beam incastrato alla base;
- Viene inserita la cerniera plastica alla base della colonna in termini di momento-rotazione;
- Il contatto tra la trave e il pilastro è modellato con un link rigido finalizzato a impedire i soli scorrimenti orizzontali nella direzione del fuori piano, mentre è consentita la rotazione;
- I dispositivi di collegamento trave-pilastro sono modellati come general link;
- Il contatto tra la trave e il pilastro è modellato attraverso l'inserimento di due link con comportamento SLIP bilinear/compression.

ESEMPIO DI CALCOLO:

<u>CASO STUDIO STABILFLEX</u> E <u>CASO STUDIO EDIL TP</u>

- (a) Criterio di dimensionamento per edifici esistenti
- (b) Stima degli spostamenti attesi a seguito dell'inserimento dei dispositivi
- (c) Verifica

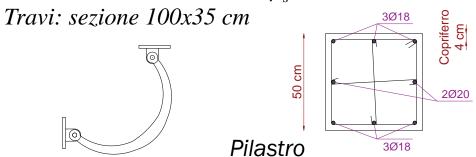
Analisi statica non lineare (Capacity Spectrum)

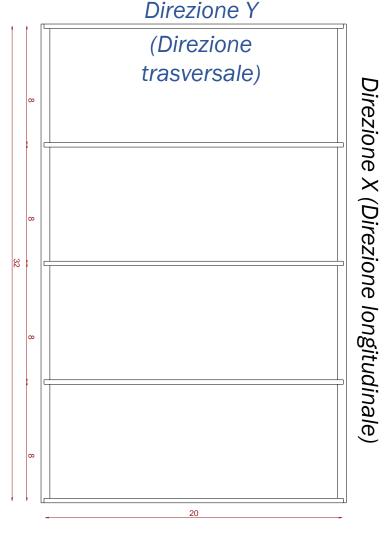

Analisi dinamica non lineare (Time History)

(d) Modellazione a elementi finiti

Analisi nel piano

Analisi nel piano ortogonale

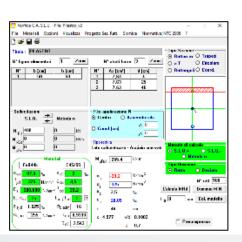

Caso studio STABILFLEX



L'Aquila, T1, C. Calcestruzzo C45/55

Acciaio FeB44K

Pilastri: sezione 50x50 cm, ρ_s 0.8%


50 cm

Definizione delle caratteristiche meccaniche medie dei materiali

Livello di conoscenza	Geometrie (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC
LC1		Progetto simulato in accordo alle norme dell'epoca e indagini limitate in situ	Valori usuali per la pratica costruttiva dell'epoca e prove limitate in situ	Analisi lineare statica o dinamica	1.35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in alternativa rilievo	Elaborati progettuali incompleti con indagini limitate in situ; in alternativa indagini estese in situ	Dalle specifiche originali di progetto o dai certificati di prova originali, con prove limitate in situ; in alternativa da prove estese in situ.	Tutti	1.20
LC3	completo ex-novo	Elaborati progettuali completi con indagini limitate in situ; in alternativa indagini esaustive in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con prove estese in situ; in alternativa da prove esaustive in situ.	Tutti	1.00

Si assume un fattore di confidenza (FC) pari a 1.20, corrispondente al livello di conoscenza LC2.

VcaSlu Prof. Gelfi

fcd [MPa]	37.5	Resistenza di calcolo a compressione (cls)
fyd [MPa]	367	Resistenza di calcolo a trazione (acciaio)

 $M_{Rd \, pilastro} = 293.3 \, kNm$

Definizione del numero di dispositivi richiesti

Si ipotizza un valore di Heff ⁽⁰⁾ pari all'80% dell'altezza totale H.

$$H_{eff}^{(0)} = 0.8 \cdot H = 4.8m$$

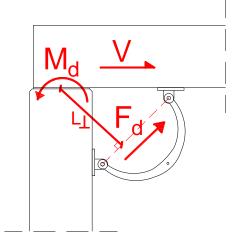
$$V^{(0)} = \frac{M_{Rd}}{H_{eff}^{(0)}} = 61.1kN \qquad Da \ cui$$

$$F_d^{(0)} = V^{(0)} \cdot \sqrt{2} = 86.4kN$$

$$M_{rd}^{(0)} = F_d^{(0)} \cdot L_{\perp} = 56.2kNm$$

$$H_{eff}^{(1)} = \frac{M_{Rd} \cdot H}{M_d^{(0)} + M_{Rd}} = 5.04m$$

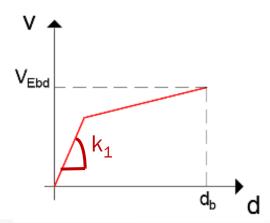
$$F_d^{(1)} = \frac{M_{Rd} \cdot H}{M_d^{(0)} + M_{Rd}} = 5.04m$$


Siccome $F_d^{(0)}$ e $F_d^{(1)}$ sono associati allo stesso numero di dispositivi (calcolato come il rapporto tra F_d e V_{Ebd}) allora il criterio di convergenza è verificato. Sono quindi stati inseriti quattro dispositivi di collegamento in ciascun giunto, cioè una forza totale di 95.6kN, con uno spostamento di progetto del singolo dispositivo pari a 40mm.

Calcolo periodo proprio della struttura:

$$T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$

Quindi:


$$k_{B} = \frac{12EI_{c}}{H^{3}} \frac{EI_{c} + kH}{4EI_{c} + kH}$$

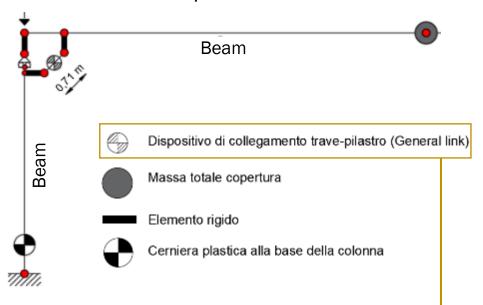
k è la rigidezza rotazionale dei dispositivi. Si considerano quattro dispositivi per ogni nodo (n_d^* pari a 4).

$$k = n_d^* \cdot k_1 \cdot (L_\perp)^2 = 4 \cdot \frac{1kN}{mm} \cdot (650mm)^2 = 1690kNm$$

 k_1 è la rigidezza del primo ramo (elastico) pari a 1kN/mm

$$k^*=k_B\cdot n_{Pilastri\ laterali}^\circ=k_B\cdot 10=14130.8\ kN/m$$
 Il periodo proprio della struttura è quindi pari a: $T^*=2\pi\cdot \sqrt{\frac{m^*}{k^*}}=1.2s$ Dove

- m* rappresenta la somma della massa della copertura e di quota parte della massa associata ai pannelli perimetrali e ai pilastri. Essa è circa pari a 500t;
- E_c rappresenta il modulo di elasticità del calcestruzzo ed è pari a 36283MPa;
- I_c rappresenta il momento di inerzia ed è pari a 5.2·10⁻³m⁴.


La rigidezza $E_c I_c$ è stata abbattuta del 50% per tener conto della fessurazione del cls:

$$E_c I_c = 9.45 \cdot 10^{13} \text{Nmm}^4$$

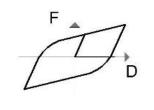
Entrando nello spettro di spostamento elastico, cioè con fattore di struttura pari a 1, con il valore di periodo T^* si ottiene un valore di spostamento $Sd(T^*)$ pari a:

Modellazione a elementi finiti

1. Analisi nel piano:

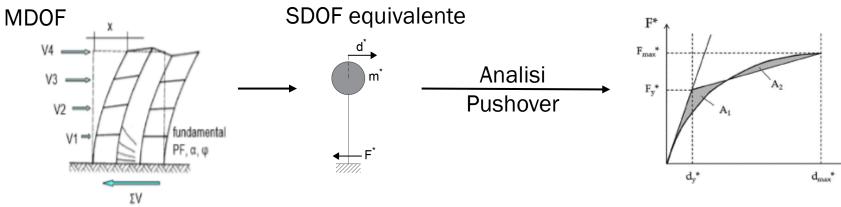

La cerniera plastica alla base del pilastro è stata modellata utilizzando un legame di tipo Modified Takeda.

Modified takeda					
Momento [kNm] Rotazione [rad/m]					
220.8	0.004996				
247.4	0.005941				
293.3	0.060184				


In ogni giunto trave-pilastro sono stati inseriti 4 dispositivi di collegamento utilizzando general link di tipo spring, con rigidezza totale pari a 4 kN/mm.

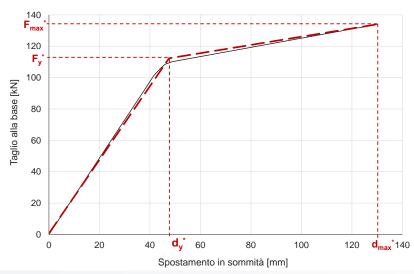
Ciascun dispositivo dissipativo

Legame Bilineare				
Elasto-Plastico				
F [kN] D [mm]				
18.6 18.6				
23.9 40.0				


Legame Bouc-Wen						
k [kN/mm]	Fy [kN]	r	S	а	b	
1	18.6	0.247 5	2.0	0.5	0.5	

Verifica

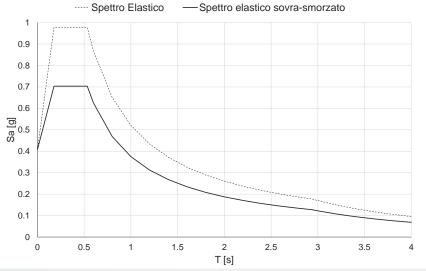
1. Analisi statica non lineare (Capacity Spectrum):


Spettro di capacità

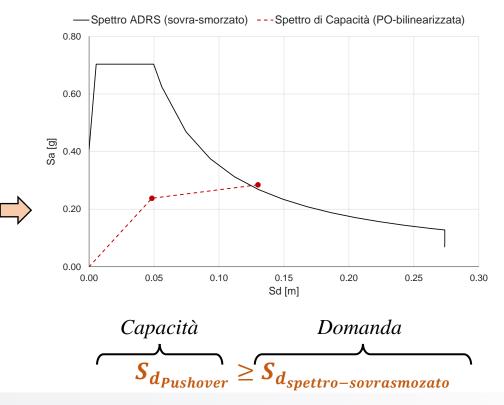
Spostamento massimo associato a d_{bd} dispositivo

$$\xi_{eq} = k \frac{63.7 \left(F_{y}^{*} d_{\text{max}}^{*} - F_{\text{max}}^{*} d_{y}^{*} \right)}{F_{\text{max}}^{*} d_{\text{max}}^{*}} + 5 = 14.75\%$$

Si assume k=0.33 in quanto si ritiene la struttura poco dissipativa essendo lo spostamento al limite di snervamento pari a 18.6 mm.

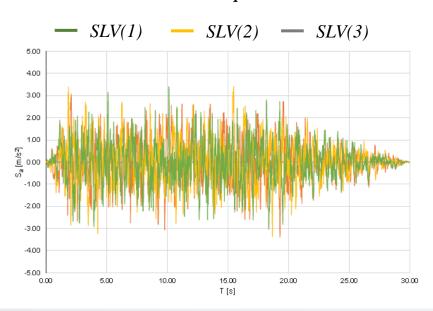


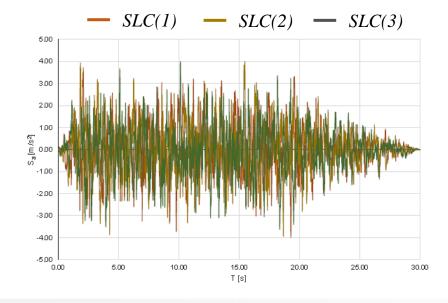
Verifica


1. Analisi statica non lineare (Capacity Spectrum):

$$\eta = \sqrt{\frac{10}{5 + \xi_{eq}}} = 0.71$$

Viene quindi ottenuto lo spettro di domanda sovrasmorzato

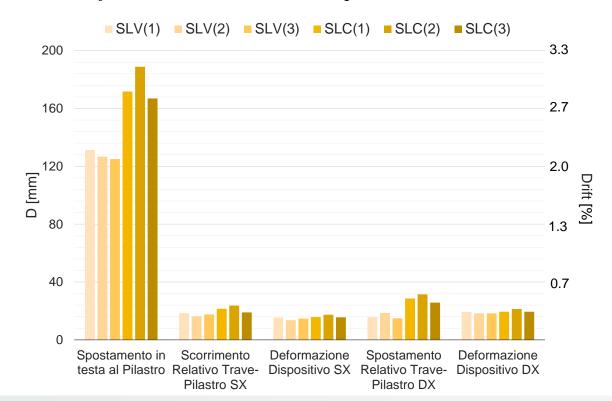

Verifica fatta in termini di spostamento



Verifica

2. Analisi dinamica non lineare

La validazione tramite analisi time history è scorporata in due fasi: la prima prevede la verifica del dispositivo nel piano, mentre la seconda la valutazione del comportamento in direzione ortogonale al piano. Per entrambe le validazioni sono stati utilizzati due set composti da tre accelerogrammi spettro-compatibili a stato limite di salvaguardia della vita e a stato limite di prevenzione al collasso.



Verifica

2a. Analisi dinamica non lineare nel piano

Per il calcolo dello smorzamento è stato utilizzato il criterio 'Mass & Stiffness Proportional'. Sono quindi stati implementati i periodi T_1 e T_2 , rispettivamente pari a 2.0 e 0.3 s, e fattore di smorzamento ξ pari al 3%.

Sono qui presentati i risultati ottenuti in termini di spostamento in testa al pilastro, scorrimento relativo all'interfaccia trave-pilastro e deformazione assiale dei dispositivi di collegamento trave-pilastro nelle due connessioni.

Confronto del momento alla base:

[kNm]	Analis	Capacity spectrum			
M _{max}	SLV (1)	SLV (1) SLV (2) SLV (3)			
2	274.65	262.7	262.5	251.1	

Questo sistema di connessione è efficace nella dissipazione di energia?

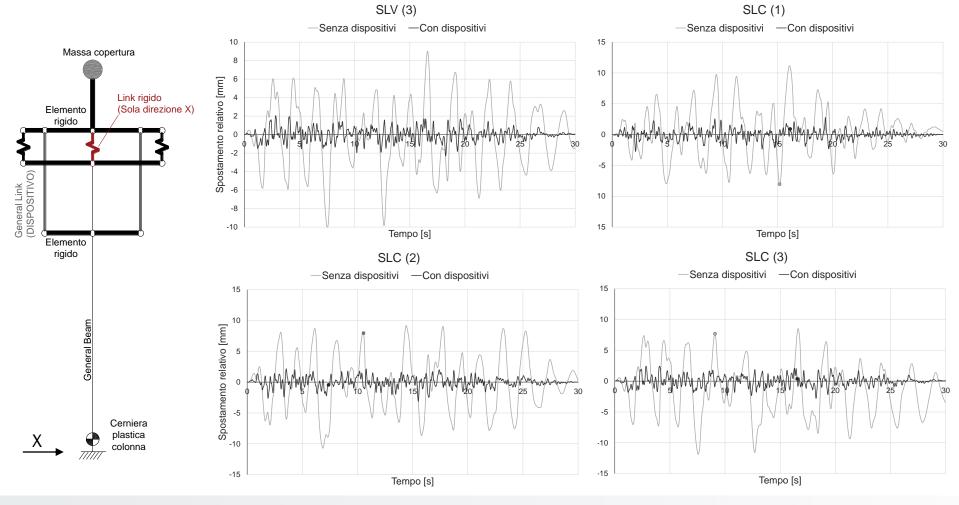
Si raggiunge il M_{Rd} (293.3kNm) alla base del pilastro?

MRd	Analisi dinamica non lineare			Capacity
max/	SLV (1)	SLV (2)	SLV (3)	spectrum
Σ	0.936	0.896	0.895	0.856

Essendo i rapporti $\frac{M}{M_{Rd}}$ <1, il sistema è efficace per la dissipazione di energia e non si sviluppa alcuna cerniera plastica alla base del pilastro.

Verifica

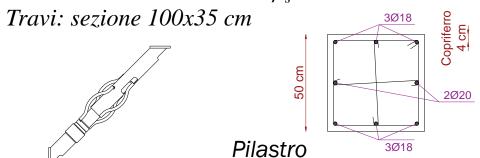
2b. Analisi dinamica non lineare in direzione ortogonale al piano

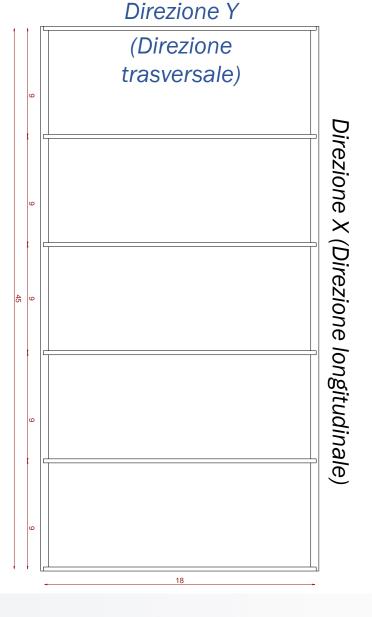

Sono state condotte analisi in direzione ortogonale al piano al fine di valutare il contributo che i dispositivi trave-pilastro riescono a offrire al fine di evitare il ribaltamento della trave. Per studiare tale comportamento è stato preso a riferimento il singolo pilastro con i relativi dispositivi di connessione trave-pilastro e la massa della copertura associata.

Verifica

2b. Analisi dinamica non lineare in direzione ortogonale al piano

Caso studio EDIL TP

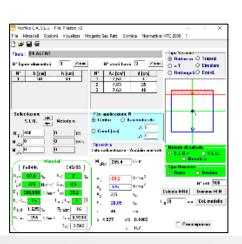



L'Aquila, T1, C.

Calcestruzzo C50/60

Acciaio FeB44K

Pilastri: sezione 50x50 cm, ρ_s 0.8%


50 cm

Definizione delle caratteristiche meccaniche medie dei materiali

Livello di conoscenza	Geometrie (carpenterie)	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC
LC1		Progetto simulato in accordo alle norme dell'epoca e indagini limitate in situ	Valori usuali per la pratica costruttiva dell'epoca e prove limitate in situ	Analisi lineare statica o dinamica	1.35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in alternativa rilievo	Elaborati progettuali incompleti con indagini limitate in situ; in alternativa indagini estese in situ	Dalle specifiche originali di progetto o dai certificati di prova originali, con prove limitate in situ; in alternativa da prove estese in situ.	Tutti	1.20
LC3	completo ex-novo	Elaborati progettuali completi con indagini limitate in situ; in alternativa indagini esaustive in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con prove estese in situ; in alternativa da prove esaustive in situ.	Tutti	1.00

Si assume un fattore di confidenza (FC) pari a 1.20, corrispondente al livello di conoscenza LC2.

VcaSlu Prof. Gelfi

fcd [MPa]	41.7	Resistenza di calcolo a compressione (cls)
fyd [MPa]	367	Resistenza di calcolo a trazione (acciaio)

 $M_{Rd\,pilastro} = 295.4 kNm$

Definizione del numero di dispositivi richiesti

Si ipotizza un valore di Heff ⁽⁰⁾ pari all'80% dell'altezza totale H.

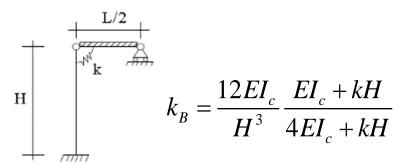
$$H_{eff}^{(0)} = 0.8 \cdot H = 4.8m$$

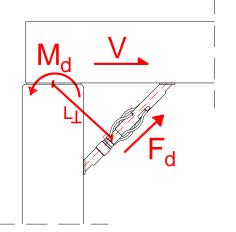
$$V^{(0)} = \frac{M_{Rd}}{H_{eff}^{(0)}} = 61.5kN \qquad Da cui$$

$$F_d^{(0)} = V^{(0)} \cdot \sqrt{2} = 87.1kN$$

$$M_{rd}^{(0)} = F_d^{(0)} \cdot L_{\perp} = 48.7kNm$$

$$H_{eff}^{(1)} = \frac{M_{Rd} \cdot H}{M_d^{(0)} + M_{Rd}} = 5.15m$$

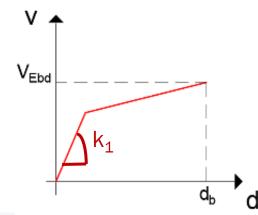

$$F_d^{(1)} = \frac{M_{Rd}}{H_{eff}^{(1)}} \cdot \sqrt{2} = 81.12kN$$


Siccome $F_d^{(0)}$ e $F_d^{(1)}$ sono associati allo stesso numero di dispositivi (calcolato come il rapporto tra F_d e V_{Ebd}) allora il criterio di convergenza è verificato. Sono quindi stati inseriti due dispositivi di collegamento in ciascun giunto, cioè una forza totale di 140kN, con uno spostamento di progetto del singolo dispositivo pari a 12.5mm.

Calcolo periodo proprio della struttura:

$$T^* = 2\pi \sqrt{\frac{m^*}{k^*}}$$

Quindi:



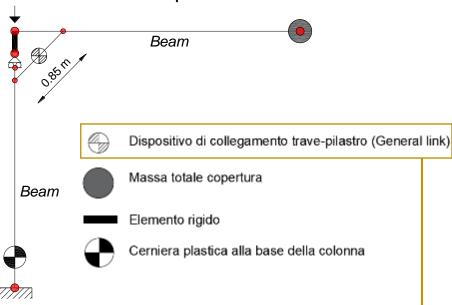
k è la rigidezza rotazionale del singolo. Si considerano due dispositivi per ogni nodo (n_d^* pari a 2).

$$k = n_d^* \cdot k_1 \cdot (L_\perp)^2 = 2 \cdot \frac{14.6kN}{mm} \cdot (560mm)^2 = 9.157,1kNm$$

 k_1 è la rigidezza del primo ramo (elastico) pari a 14.6kN/mm

$$k^*=k_B\cdot n_{Pilastri\ laterali}^\circ=k_B\cdot 12=23399.9\ kN/m$$
 II periodo proprio della struttura è quindi pari a: $T^*=2\pi\cdot \sqrt{\frac{m^*}{k^*}}=1.0s$ Dove

- m* rappresenta la somma della massa della copertura e di quota parte della massa associata ai pannelli perimetrali e ai pilastri. Essa è circa pari a 600t;
- E_c rappresenta il modulo di elasticità del calcestruzzo ed è pari a 40GPa;
- I_c rappresenta il momento di inerzia ed è pari a 5.2·10⁻³m⁴.

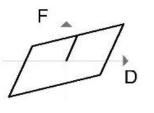

La rigidezza $E_c I_c$ è stata abbattuta del 50% per tener conto della fessurazione del cls:

$$E_c I_c = 1.04 \cdot 10^{14} \text{Nmm}^4$$

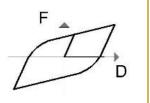
Entrando nello spettro di spostamento elastico, cioè con fattore di struttura pari a 1, con il valore di periodo T^* si ottiene un valore di spostamento $Sd(T^*)$ pari a:

Modellazione a elementi finiti

1. Analisi nel piano:


La cerniera plastica alla base del pilastro è stata modellata utilizzando un legame di tipo Modified Takeda.

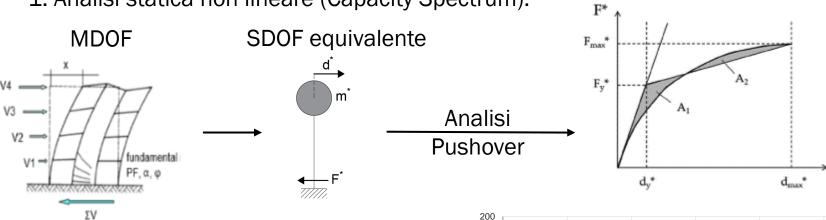
Modified takeda				
Momento [kNm]	Rotazione [rad/m]			
240.5	0.005582			
256.1	0.005866			
295.4	0.064848			


In ogni giunto trave-pilastro sono stati inseriti 2 dispositivi di collegamento utilizzando general link di tipo spring, con rigidezza totale pari a 29.2 kN/mm.

Ciascun dispositivo dissipativo

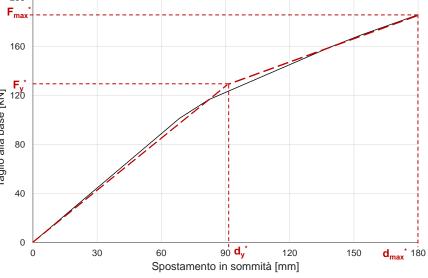
Legame Bilineare				
Elasto-Plastico				
F [kN]	D [mm]			
57.6	3.94			
70.0	12.5			
· · · · · · · · · · · · · · · · · · ·				

Legame Bouc-Wen				
k [kN/mm]	Fy [kN]	S	а	b
14.6	57.6	2.0	0.5	0.5



Verifica

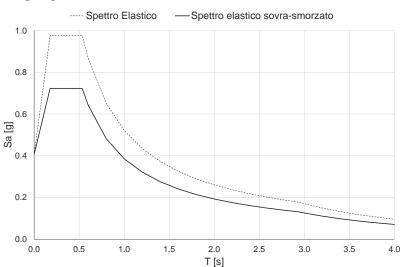
1. Analisi statica non lineare (Capacity Spectrum):


Spettro di capacità

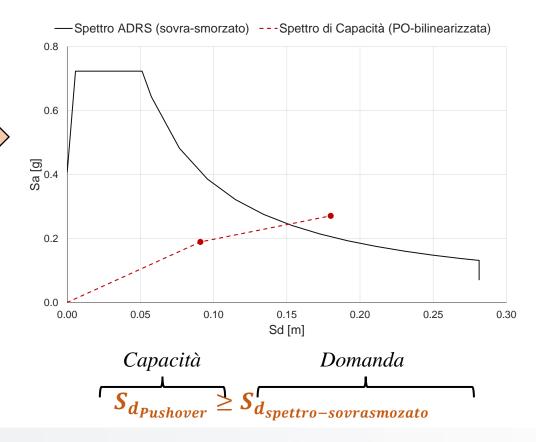
Spostamento massimo associato a d_{bd} dispositivo

$$\xi_{eq} = k \frac{63.7 \left(F_{y}^{*} d_{\text{max}}^{*} - F_{\text{max}}^{*} d_{y}^{*} \right)}{F_{\text{max}}^{*} d_{\text{max}}^{*}} + 5 = 13.12\%$$

Si assume k=0.66 in quanto si ritiene la struttura dissipativa essendo lo spostamento al limite di snervamento pari a 3.94 mm.



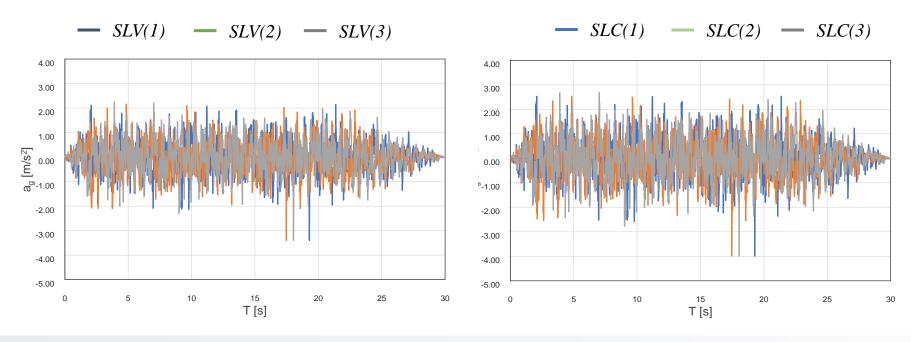
Verifica


1. Analisi statica non lineare (Capacity Spectrum):

$$\eta = \sqrt{\frac{10}{5 + \xi_{eq}}} = 0.74$$

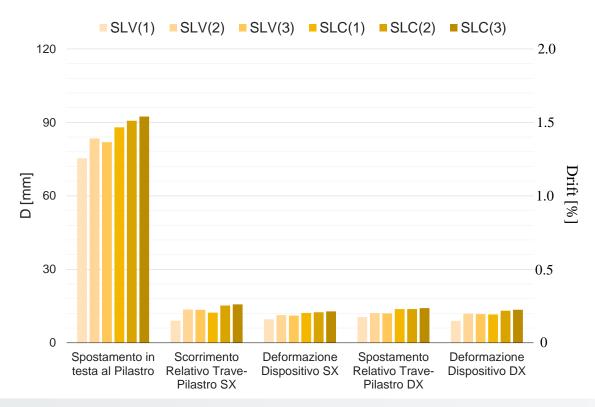
Viene quindi ottenuto lo spettro di domanda sovra-smorzato a SLC

Verifica fatta in termini di spostamento



Verifica

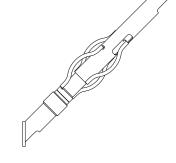
2. Analisi dinamica non lineare


La validazione tramite analisi time history è scorporata in due fasi: la prima prevede la verifica del dispositivo nel piano, mentre la seconda la valutazione del comportamento in direzione ortogonale al piano. Per entrambe le validazioni sono stati utilizzati due set composti da tre accelerogrammi spettro-compatibili a stato limite di salvaguardia della vita e a stato limite di prevenzione al collasso.

Veri Esempio di calcolo

2a. Analisi dinamica non lineare nel piano

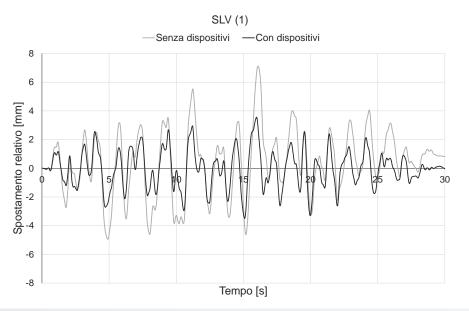
Per il calcolo dello smorzamento è stato utilizzato il criterio 'Mass e Stiffness Proportional'. Sono quindi stati implementati i periodi T_1 e T_2 , rispettivamente pari a 2.0 e 0.3 s, e fattore di smorzamento ξ pari al 3%.

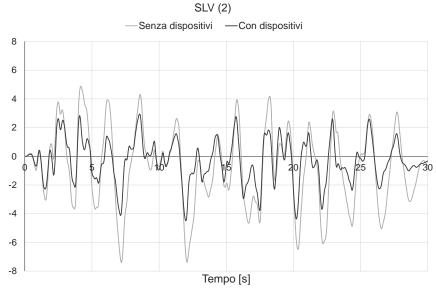

Sono qui presentati i risultati ottenuti in termini di spostamento in testa al pilastro, scorrimento relativo all'interfaccia trave-pilastro e deformazione assiale dei dispositivi di collegamento trave-pilastro nelle due connessioni.

Confronto del momento alla base:

[kNm]	Analisi dinamica non lineare			Capacity spectrum
M _{max} [I	SLV (1)	SLV (2)	SLV (3)	spectrum
M	262.9	274.7	268.8	257.7

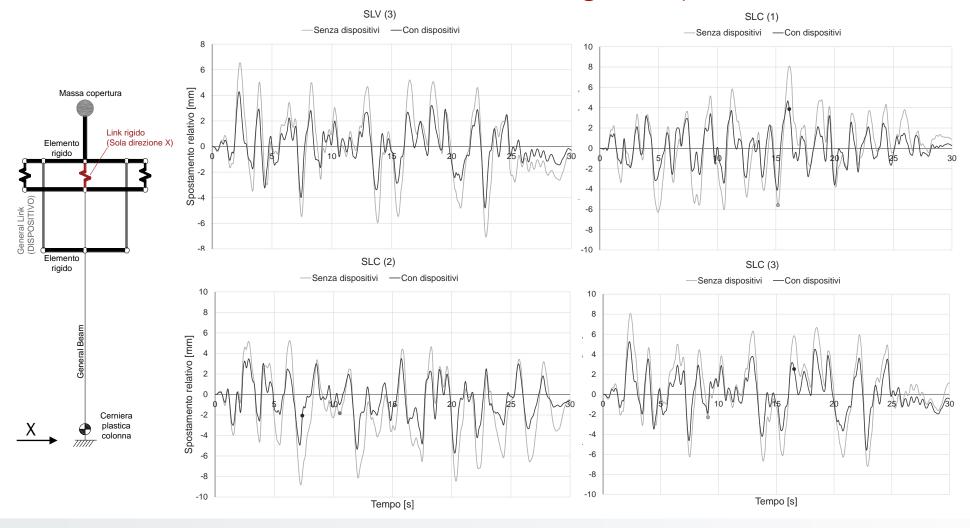
Questo sistema di connessione è efficace nella dissipazione di energia? Si raggiunge il M_{Rd} (295.4kNm) alla base del pilastro?


/M _{Rd}	Analisi dinamica non lineare			Capacity
max	SLV (1)	SLV (2)	SLV (3)	spectrum
Σ	0.89	0.93	0.91	0.87


Essendo i rapporti $\frac{M}{M_{Rd}}$ <1, il sistema è efficace per la dissipazione di energia e non si sviluppa alcuna cerniera plastica alla base del pilastro.

Verifica

2b. Analisi dinamica non lineare in direzione ortogonale al piano


Sono state condotte analisi in direzione ortogonale al piano al fine di valutare il contributo che i dispositivi trave-pilastro riescono a offrire al fine di evitare il ribaltamento della trave. Per studiare tale comportamento è stato preso a riferimento il singolo pilastro con i relativi dispositivi di connessione trave-pilastro e la massa della copertura associata.

Verifica

2b. Analisi dinamica non lineare in direzione ortogonale al piano

GRAZIE DELL'ATTENZIONE