Next Generation of Precast Concrete Seismic Resilient Buildings

Prof. Ing. Stefano Pampanin

Department of Structural and Geotechnical Engineering <u>Sapienza University of Rome, Italy</u>

World Earthquakes Map

PRECAST CONCRETE STRUCTURES IN SEISMIC REGIONS

- The use and development of **precast concrete structures** in seismic zones have been limited by:
 - lack of confidence on their performance
 - absence of rational seismic design provisions
- **Common trend** in the major model codes (U.S., Japan, New Zealand, Europe):
 - *emulation* of cast-in-place reinforced concrete (wet connections)
 - *strong* connections: inelastic response accomodated <u>outside</u> the joint region
 - *jointed ductile connections* (new):
 inelastic response within the connection

Fully-functioning three-span industrial plant

Post-earthquake debris

(Some) Fundamental Aspects in Sesimic Design of Precast Concrete Buldings

- Appropriate **Design Methodology** (Force-Based Design or Displacement Based Design)
- Understanding overall **Building Behaviour** (structural systems, diaphragm, non-structural elements, foundations)
- **Connections** detailing (ductile behaviour, dissipation)
- **Redundancy and robustness** (preventing progressing collapse)
- **Displacement compatibility** (between lateral-resisting systems, floordiaphragms, infills facades)
- and....detailing, detailing, detailing...(the devil is in the detail!)

"HINGED" CONNECTIONS

(typical of Precast Industrial Buildings in Europe)

PRECAST INDUSTRIAL Building

Key elements and nomenclature

3.5 Large free space buildings This type of building is used for:

- industrial buildings
- warehouses
- department stores, etc.

When large column-free areas are needed, the building is normally designed with precast frame systems or load-bearing facade walls.

Intermediate floors may be installed in the whole building or parts of it. Staircases and shafts are normally formed using bearing walls. Additional precast products are shown in Fig. 3.10.

FIP Handbook on precast Building structures

Straight

Typical beam- column or column-foundation connections for industrial precast construction in the Mediterranean countries

Figures from Calvi, Bolognini, Nascimbene (fib 2006)

Typical European hinged beam-to-column connection on the top of a column Insitu topping layer

(Some) typical Advantages and structural Limits of precast structures

• Advantage: Quality control, speed of erection, dry construction

VS.

• Limit: inefficient <u>static schemes</u> (simple supports of beams, slabs). Oversizing of cantilever columns for lateral (wind & earthquake) loads

NEED for MOMENT RESISTING CONNECTIONS

Limitation to one-two storeys industrial buildings

(need for core walls or other lateral resisting systems)

•Significant <u>limits</u> due to the excessive deformability and high lateral displacement demand

•Second Order Effects (P-Delta)

→ NOT efficient Static Structural Scheme

"EMULATION"

OF CAST-IN-SITU CONCRETE CONNECTIONS

Traditional solutions based on **"Emulation"** of cast-in-place concrete

Construction Steps of emulative System S1

Step 5 Placement of Hollow-Core units (with propping underneath)

Step 6-7 Placement of all reinforcement including mesh and casting of concrete topping on the floor

fib Bulletin n. 78

Construction Steps of emulative System S2

Potenza 19-0

Potenza 19-0

Bazzano, L'Aquila 2009

- Note: The interface between insitu concrete and beams in the beam-to-column joint cores should be made intentionally rough enough to accommodate shear.
- It is recommended that **mechanical shear keys** are created at the vertical ends of the precast beams during casting of precast beams.

Emulative System S1 with corbel (minimum or no propping required)

Application of System S1 in Turkey (Photo courtesy of Yapi Merkezi Prefabrication Inc. Istanbul)

fib Bulletin n. 78

Application of Emulative System S7 (with continuous columns) in Pune-India (courtesy of Precast India Infrastructures PVT LTD - photo by Nagesh Kole)

fib Bulletin n. 78

Application of "Emulative" solutions in New Zealand

Unisys House, Wellington, New Zealand

(Photo courtesy of A. O'Leary)

Double vertical cruciform joints

Unisys House, Wellington, New Zealand (Photo courtesy of A. O'Leary)

Construction Steps of emulative System S3 (top beam passing through)

Application of "Emulative" solutions

Application of "Emulative" solutions

Application of "Emulative" solutions (more)

Architectural Rendering of UoC Biological Science Building

Limits of the "Emulative" approach

- Does not exploit the advantages of precast concrete
- Slow down the erection speed (higher costs)
- Complexity of connections and of semi-precasting elements (higher costs)

• As typical of Traditional Ductile Systems

DUCTILITY= (Unavoidable?) DAMAGE

•Permanent (Residual) Deformations after the earthquake

•High Costs of repairing (when feasible and convenient to repair)

Seismic Performance of modern solutions

A Reality Check..

"Shaky Islands"

The dramatic "experimental tests"

from the Christchurch Earthquake sequence

(4 Sept 210, 26 Dec 2010, 22 Feb 2011, 13 June 2011...)

12.51pm 22nd Feb 2011...

Issues:

- Design methodology and assumptions (capacity design)
- Lack of Redundancy
- Detailing

PGC- Collapsed Reinforced Concrete Building (1960s)

PGC Building (Photo courtesy of Weng Y Kam)

CTV - Collapsed Reinforced Concrete Building (mid 1980s)

Issues:

- Design methodology and assumptions (capacity design)
- Lack of Redundancy
- Detailing

22-storey precast concrete (post-1980s)

(b) System 2 - Precast Beam Units Through Columns

Extensive **damage (beyond** reparability) to modern Buildings

Typical plastic hinges in beams (intended to act as sacrificial fuses)

A very common end : Man-made Demolition

As per 12 June 2011 Source: CCC Data (Kam, Pampanin, Elwood, 2012)

"But they [buildings] did what they were meant to do"

Rebuilding a SAFER and RESILIENT community

Photo courtesy of Kam Yuen Weng and Umut Akguzel

The Concept of Resilience

"Our" understading of Earthquake-Resistant

From SEAOC Vision 2000 (1995)

'Y OF

UNIVERS

CANTERBURY Te Whare Wānanga o Waitaha CHRISTCHURCH NEW ZEALAND

Fallacy

The Code-Standard is **NOT** meant to be used as a Target or Ultimate Goal but as a <u>minimum</u> by law

Corollary

Earthquake-Resistant

(earthquake engineering community's view)

Earthquake-Proof (everyone else's view)

The Renewed Challenge of Eartquake Engineering: Raising the bar to meet Society's Expectations

Towards the "Ultimate Earthquake Proof-building" Shake-table testing of an integrated low-damage system

from Johnston, Watson, Pampanin, Palermo (2013, 2014)

Typical damage to structural and non-structural components in New BUILDINGS (Traditional Emulation of Cast-in-situ approach)

"JOINTED DUCTILE" CONNECTIONS (Low-Damage Technology)

New Generation of Seismic Resisting Systems Introduction to PRESSS-technology

Prof. Ing. Stefano PAMPANIN

PRESSS-Technology (PREcast Seismic Structural System)

Five-Storey Test-Building (UC San Diego, Aug 1999, coordinator Prof. M.J.N. Priestley)

New Generation of Damage-Resisting systems

- Jointed Ductile DRY connections assembled by post-tensioning techniques
- inelastic demand accomodated within the connection
- <u>Hybrid systems</u> : combination of unbonded post-tensioning AND dissipaters
- "Controlled Rocking" :
 - <u>Reduced</u> level of damage
 - <u>Negligible</u> residual (permanent) deformations (recentering) WALLS

Traditional (monolithic)

New generation (jointed ductile)

courtesy of Dion Marriott

Learning from our ancestors

What a brilliant legacy from our Ancestors

A paradigm shift

□ Changing the way of thinking at "plastic hinges"

Historical Developments in Seismic Design Philosophy

PAST (pre-1970s codes)

PRESENT (post-1970s codes)

FUTURE (Next Generation of codes: NZ 3101:2006 (Appendix B)

One Further Step Ahead:

Repairability of the Weakest Link of the chain

Brittle Links Ductile Link Brittle Links

External & Repleacable Dissipaters ("Plug & Play")

Marriott et al., 2008

The "Plug & Play" dissipater

XS (10-20 kN)

Earthquake Event or Aftershock? (you can simply check and replace the Plug&Play fuses)

Alternative "architecture" Configurations

Design Code Implementation

Design guidelines are available

fib, 2004

fib, 2016

Code/Standards are available

NZS 3101:Part 1:2006

New Zealand Standard

CONCRETE STRUCTURES STANDARD

Part 1 – The Design of Concrete Structures

NZS3101:2006

APPENDIX B – SPECIAL PROVISIONS FOR THE SEISMIC DESIGN OF DUCTILE JOINTED PRECAST CONCRETE STRUCTURAL SYSTEMS (Normative)

NZS 3101:Part 1:2006

B2 Definitions

B2.1 Jointed systems

Jointed systems are structural systems in which the connections between the precast concrete elements are weaker than the elements themselves. Jointed systems do not emulate cast-in-place concrete construction. The connections of jointed systems can be of limited ductility or ductile.

B2.2 Hybrid systems

Hybrid systems are jointed structural systems in which the self-centering capability is provided by posttensioning and/or axial compressive load, and energy dissipation is provided by yielding non-prestressed steel reinforcement or other special devices. Hybrid systems are ductile.

B2.3 Equivalent monolithic systems

Equivalent monolithic systems are structural systems in which the connections between the precast concrete elements are designed to emulate the performance of cast-in-place concrete construction. The connections can be of limited ductility or ductile.

B3 Scope and limitations

This Appendix applies to ductile jointed and hybrid precast concrete structural systems. The systems may be moment resisting frames, structural walls or dual systems, in which the precast concrete elements are joined together by post-tensioning techniques with or without the presence of non-prestressed steel reinforcement or other energy dissipating devices.

B4 General design approach

B4.1 General

Either a force-based or a displacement-based design approach thall be used for the seismic design of jointed and hybrid structural systems. Modifications to the inter-storey drift limits used in design shall be made in accordance with B4.2.

B4.2 Drift limits

Inter-storey drift limits as defined in NZS 1170.5 shall be adopted for jointed structures, except that drift limits corresponding to a damage control, or the serviceability limit state may be increased by up to 50 %, provided analytical calculations and/or experimental validation demonstrates a reduced level of damage, (both structural and non-structural), when compared to an equivalent monolithic structure. No increase in drift limit corresponding to the ultimate limit state shall be allowed where high inelastic demand and P-delta effects can govern the response.

NZCS PRESSS Design Handbook (2010)

With **Displacement Based Design Examples** of **Frames and Walls** (According to NZS3101:2006) **Design Handbook** 5 Storeys at 3.8m; total height 19m 30m 24m Fibre reinforced Non-prestressed grout pad (mild) steel Relative displacement of wall edge Post-tensioned ndons or bars UFP NZCS Unbonded NUMBER OF THE OWNER OWNE post-tensioned tendons **WANZCS** UFP Device C.,

STANZCS

From theory... to Practice

On-site Applications

Paramount Tower, San Francisco (Englekirk, 2002)

On-site Applications

Brooklyn System – Italy (Pampanin, Pagani, Zambelli, 2004)

Hotel Virgo (Mendoza, Argentina) courtesy Pretensados Argentinos

On-site Applications

On-site Applications

Zona Franca America, Costarica, Holcim Producto de Concreto

On-site Applications

Alan MacDiarmid Building, Victoria University, Wellington

Cattanach and Pampanin, 2008

NZ's second PRESSS Building (6)

- 50 step above in

some ocations, refer elevation, with

PI15 Insert cast In,

panel Insert details

refer to typical

UNIVERS

CANTERBURY Te Whare Wananga o Waitaha CHRISTCHURCH NEW ZEALAND

YOF

(insitu beams not shown)

Christchurch EQ (22 Feb 2011) performance

Precast walls top edges – minor crushing

Continuous functionality and immediate re-occupancy

Isn't this the GOOD NEWS

that our Society deserves to receive?

Rotorua Police Station

PRESSS Walls with "Plug&Play" dissipaters

PRESSS Walls with external and replaceable "Plug&Play" dissipaters

06/06/2014

Towards the "Ultimate Earthquake Proof-building" Shake-table testing of an integrated low-damage system

Johnston, Watson, Pampanin, Palermo (2013, 2014)

Next Generation of Integrated Low-Damage Building

- precast concrete with dry jointed ductile connections -

The Frame System

from Johnston, Watson, Pampanin, Palermo (2013, 2014)

Low-damage façades

(Baird, Palermo, Pampanin, 2010-2014)

Low-damage infills

(Tasligedik, Pampanin, Palermo, 2010-2014)

Friction Filled Light Gauge Steel Channel

ight Gauge Steel

studs

Channel Track: The

same section as the

- Anchor pull out and plaster damage at high drift levels (1.5-2.5%) due to lining rocking caused by the closing of the gaps (Solved in MIF2-TBFD)
- Linings have freedom for rocking that is to be utilized when the supplied external side gaps are closed in the storey
- Linings and studs have freedom for movement in horizontal that is utilized all the time when drift is imposed

LOW DAMAGE UNREINFORCED CLAY BRICK INFILL WALL **DESIGN RECOMMENDATIONS (Shown on a single skin)**

Note:

- Infill panel zone to be constructed by multiple infill **panels** with the required design side gap (Δ_G) • equally distributed among the clay brick infill panels to achieve rocking cantilever walls: A minimum height to length aspect ratio of 1.5-2.0 is desirable for each sub-panel
- The gaps to be filled with Polyurethane Joint Sealant (Construction AP): Can either be fire rated or non-fire rated. To ease the application polyethylene foam can be used to prevent overflow
- The unreinforced clay bricks to be infilled inside the area bounded by the light gauge steel sub-framing (Light gauge steel tracks and studs)
- All weight of the infill panel zone will be carried by the steel framing system. Therefore, the steel framing system should be attached to the surrounding structural system with adequate out-of-plane capacity (Area based unit weight~1.36 kN/m²)

Johnston, Watson, Pampanin, Palermo, 2014

' OF

Johnston, Watson, Pampanin, Palermo, 2014

YO

Johnston, Watson, Pampanin, Palermo, 2014

Johnston, Watson, Pampanin, Palermo, 2014

SERA Project (2017-2019) Towards the Ultimate Earthquake proof Building System: development and testing of integrated low-damage technologies for structural and non-structural elements

Partner 1:

Ing. Murilo Mancini

Studies IUSS Pavia

Additional Users:

Dr. Daniele Perrone

Prof. Andre Filiatrault

University School for Advanced

Partner 2:

Coordinator

https://www.youtube.com/watch?v=RHczltvneug

Stefano Pampanin (PI),

Jonathan Ciurlanti, Simona Bianchi, Gabriele Granello, Daniele Perrone, Michele Palmieri, Damian Grant, Alessandro Palermo, Andre Filiatrault, Alfredo Campos Costa, Antonio Correia

Sapienza University of Rome Coordinator (Team Leader): Prof. Stefano Pampanin Additional Users: Ing. Simona Bianchi Ing. Jonathan Ciurlanti

Partner 3: Swiss Federal Institute of Technology (ETH) Zurich

Coordinator: Prof. Bozidar Stojadinovic

Additional Users: Dr. Anastasios Tsiavos **Partner 4:** Arup Group (London and Amsterdam)

Coordinator Dr. Damian Grant

Additional Users Dr. Rachid Abu-Hassan Dr. Michele Palmieri

- 44.9

Partner 5: University of Canterbury, New Zealand

Coordinator: Prof. Alessandro Palermo

Additional Users: Ing. Gabriele Granello Ing. Giuseppe Loporcaro

¥,

1 August 2019 Laboratório Nacional de Engenharia Civil (LNEC) - Lisbon (Portugal)

TRIDIRECTIONAL TEST XYZ - LIMIT STATE 4

Christchurch (NZ) February 22, 2011 Mw = 6.3, Station = CCCC

> Scaling Factor = 1.2PGA = 0.58 g

Maximum inter-storey drift = 1.00 % Peak floor acceleration = 1.28g

Towards a "S3 Design" SAFER, SUSTAINABLE, SMART Building Systems (Pampanin et al., 2016-)

How much would it cost (vs. performance)?

\$\$\$\$

The bar has been set to very high level

(Ŭ)

 \bigstar

but the International Earthquake Engineering community is going to get there, <u>together</u>!

ALLATICALIA

V

Kia Ora Thanks for your attention Grazie per l'attenzione

stefano.pampanin@uniroma1.it