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= |l Machine Learning: definizioni e obbiettivi

= Statistical Learning Theory

= Le Reti Neurali: dai percettroni ai Transfomers

Multilayer Perceptrons

Le reti Convoluzionali e le immagini, Reti Ricorrenti,

= Applicazioni avanzate ai dati non strutturati

ImageNet: Image Processing, Classification
Immagini e Testi: Automated Captioning
Visual Question Answering

Multimodality
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MACHINE LEARNING

DEFINIZIONI ED OBBIETTIVI




COSA SIGNIFICA APPRENDERE DAI DATI?




LEARNING MACHINES

Funzione indotta Funzione indotta Funzione indotta
& modello troppo semplice & modello adeguato & modello troppo complesso
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Istanze di Esempio



MACHINE LEARNING WORKFLOW

Data
Annotation

Learning Algorithm

‘ Selection of -
the best classifier

Wi Decisions
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MACHINE LEARNING: DEFINITION

= A computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E [Mitchell]

= Problem definition for a learning agent
= Task T
= Performance measure P

= Experience E



DESIGNING A LEARNING SYSTEM

|. Choosing the training experience
u Examples of best moves, games outcome ...
2. Choosing the target function
u board-move, board-value, ...
3. Choosing a representation for the target function
u linear function with weights (hypothesis space)
4. Choosing a learning algorithm for approximating the target function

= A method for parameter estimation



INDUCTIVE LEARNING: LEARN A FUNCTION FROM EXAMPLES

= Simplest form: learn a function from examples

f is the target function

An example is a pair (x, f(x)) fix)
'

Problem: find a hypothesis h
such that h = f

given a training set of examples *

(This is a highly simplified model of real learning: x

= |gnores prior knowledge !

= Assumes examples are given)



INDUCTIVE LEARNING METHOD

= Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples)

e.g., curve fitting:



INDUCTIVE LEARNING METHOD

= Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples)

fix

e.g., curve fitting:

A

=X



INDUCTIVE LEARNING METHOD

= Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples)

ftx) flx)
e.g., curve fitting: } A

- Jp it §




INDUCTIVE LEARNING METHOD

= Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples) | ‘?ﬁ
E.g., curve fitting: DA '\x\:
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Ockham’s razor: prefer the simplest hypothesis consistent with data



INDUCTIVE SYSTEM

Tramming examples

Inductive system

Mew instance

Acquire the model (H)
through Machine
Learning

Classification of
new instance, or
"don't know"

Using the Model, or
Hypothesis Space, H




LEARNING DECISION TREES

Problem: decide whether to wait for a table at a restaurant, based on the following

. :is there an alternative restaurant nearby?
:is there a comfortable bar area to wait in?
:is today Friday or Saturday?
:are we hungry?
: number of people in the restaurant (None, Some, Full)
:price range ($, $3, $$9)
:is it raining outside!?

: have we made a reservation?

¥ © N o U1 A W DN

: kind of restaurant (French, Italian, Thai, Burger)

0. : estimated waiting time (0-10, 10-30, 30-60, >60)



ATTRIBUTE-BASED REPRESENTATIONS

=  Examples described by attribute values (Boolean, discrete, continuous)

= E.g,situations where | will/won't wait for a table:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T | F F T |Some| $%% F T |French| 0-10 T
Xo T | F F T Full $ F F | Thai [30-60 F
X3 F | T F F |Some| $ F F | Burger| 0-10 T
Xy T | F T T Full $ F F | Thai [10-30 T
Xs T | F T F Full | $%% F T |French | =60 F
Xe F| T | F | T [Some| $% T T | Italian | 0-10 T
X7 F | T F F | None| $ T F | Burger| 0-10 F
Xs F| F F T |Some| $% T T | Thai | 0-10 T
Xy F| T | T F Full $ T F | Burger| =60 F
Xy T| T | T T Full | $%% F T [ Italian | 10-30 F
Xy F | F F F | None| % F F | Thai | 0-10 F
X9 T| T | T T Full $ F F | Burger [ 30-60 T

= Classification of examples is positive (T) or negative (F)



DECISION TREES

= One possible representation for hypotheses

= E.g, hereis the “true” tree for deciding whether to wait:

Patrons?
None m Full
WaillEstimale?
=60 30 0-10
Alternate? Hu ngl

/\ ﬁr
Reservation? Fri'sat? Alernate?

No Yes No Yes Ye
Raining?
Yes No /s Yes




EXPRESSIVENESS

= Decision trees can express any function of the input attributes.

= E.g,for Boolean functions, truth table row — path to leaf:

A
A B AxorB N

F F F = =
F T T

T F T F/NT F/NT
T T F

= Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f
nondeterministic in x) but it probably won't generalize to new examples

®  Prefer to find more compact decision trees



DECISION TREE LEARNING

= Aim:find a small tree consistent with the training examples

= |dea: (recursively) choose "most significant” attribute as root of (sub)tree

function DTL(examples. attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(ezamples)
else
best < CHOOSE-ATTRIBUTE( attributes, examples)
tree <— a new decision tree with root test best
for each value v; of best do
examples; <— { elements of examples with best = v;}
subtree <— D'TL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return tree




CHOOSING AN ATTRIBUTE

= |dea:a good attribute splits the examples into subsets that are (ideally) "all positive" or "all

negative"
000000
00000
Patrons?
Nnmull French
000 00 O
00 000 (o]

= Patrons? is a better choice

000000
200000
Type?
Italian Thai Burger
© 00 o0



PERFORMANCE MEASUREMENT

"= How do we know that h = f?

|. Use theorems of computational/statistical learning theory
2. Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size
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PERFORMANCE MEASUREMENTS (2)

D depends on

= realizable kind of performances vs.
= ... non-realizable ones
= Non-realizability depends on

= Missing attributes

= Limitation on the hypothesis space (e.g. non expressive functions)

= Redundant expressiveness is related to cases where a a largenumber of irrelevant attributes are used
% gorrect

1— realizable

—= redundant

nonrealizable

»# of examples




MACHINE LEARNING WORKFLOW

Learning Process

Manual Training
Annotation Set
Learning Algorithm
Feature Evaluation

Extraction (Model Validation)

Validation = . IIIl.I
Set = (- A
® A

Classifier

@ Selection of

. Annotated
o . the best classifier
Test Docs > |

Annotated
Documents



N-FOLD CROSS VALIDATION

= Data is split into n subsets of equal size
= Fach subset in turn is used for testing and the remainders n-/ for training

= The metrics estimated in each round are averaged

5 fold spIitting. . . . .

Testing fold

s [l 0 0

Testing fold

ss [ [ 0 [ I



MACHINE LEARNING TASKS

= SUPERVISED LEARNING DA ESEMPI

=  CLASSIFICATION
= UNSUPERVISED LEARNING

= Approcci dicriminativi Cl .
= ustering
= Approcci generative

= Embedding ottimo: Enconding/Decoding
= OQutlier and deviation detection

= Representation Learning for Images
= REGRESSION

= PreTraining as optimal encoding
= Dependency modeling

= Discovery di Associazioni/Relazioni, Sommari,
Inferenza/Causalita = REINFORCEMENT LEARNING

" SEQUENCE CLASSIFICATION " Penalty/Reward function from the Environment

* Temporal learning = Autonomous Systems

= Trend analysis and change/anomaly detection
Y & Y " Hard for complex problems



METODI DI ML: SELEZIONE DEI MODELLI

= Approcci discriminativi

® Lineari

h(x) = sign( W - x + b)

= Approcci probabilistici
= Stima delle probabilita P(Ck|X) attraverso un training set

= Modello generativo ed uso della inversione Bayesiana
, 0 (x|Cr ) p(Chr
p(x)

&



PERCEPTRON (ROSENBLATT, 1958)

= |inear Classifier mimicking a neuron
| \ [ o .
1\\1\\&“ ?édy N . B 5 .

h(x)

Bias



ADDING LAYERS ...

SHALLOW NEURAL NETWORK

Hidden
layer

DEEP NEURAL NETWORK

Multiple hidden layers
process hierarchical features
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RETI NEURALI PROFONDE

Revolution of Depth

152 layers

\ %
| 22 layers ’ |19 Iayers |

\67

357 I_ I ’ 8'aver5 ‘ 8|ayers shallow

ILSVRC'15  ILSVRC'14 ILSVRC'14  ILSVRC'13 JILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

*ICCV

Research

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015




A SIMPLE DEMO ON TENSORFLOW

" Look at: https:/playground.tensorflow.org/ Tinker With a Neural Network Right Here in Your Browser.
Don't Worry, You Can't Break It. We Promise.

o Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
000,000 0.03 v Tanh v None v 0 v Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Test loss 0.503
Training loss 0.509

Which dataset do Which

you want to use? you want to

+ - + -

4 neurons 2 neurons
Ratio of training to D

test data: 50%

—

Noise: 0
®

oooo

Batch size: 10
—

REGENERATE

D Show test data D Discretize output


https://playground.tensorflow.org/

ALTERNATIVE: MODELLI (BAYESIANI) GRAFICI




GRAMMATICHE PROBABILISTICHE: TRA SINTASSI & STATISTICA |

Rules

Rules

P
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VP parse (b) to the nonsensical meaning “Book flights on behalf of ‘the dinner’?”.

Two parse trees for an ambiguous sentence, The transitive parse (a) cor-
responds to the sensible meaning “Book flights that serve dinner”. while the ditransitive

S
VP
NP
Nominal
Nominal
Verb
Det
Noun
Noun

S S Figure 13.2

|

VP
| i _ Verb NP NP
Book Dyt Nominal i |
| i Book Det Nominal Nominal

the Nominal Noun

| |
Noun flight

dinner

the Noun Noun

dinner  flight




APPRENDIMENTO SU SEQUENZE: HIDDEN MARKOV MODELS

13

p(X1,..m Y1, 1) = p(X1)p(Y1]|X1) H (Xe| X 1)p(Ye

X))

= Stati (X) = Categorie/Concetti/Proprieta
= Osservazioni (Y): simboli di un certo linguaggio
" Emissioni vs. Transizioni
= Applicazioni:
= Speech Recognition (Simboli: fonemi, Stati: punti di segmentazione)

" Part-of-Speech (POS) tagging (Simboli: parole, Stati: categorie gramaticali)



STATISTICAL LEARNING THEORY

DALLA PAC LEARNABILITY Al PERCETTRONI




(VECTOR) SPACES, FUNCTIONS AND LEARNING

-

most specific hypothesis, S

: Engine power

most general hypothesis, G

.12

The h ¢ H floats between S and G to be consistent
It makes up the version space

(Mitchell, 1997)

-

X, Price



Structural risk minimization: example

2
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8" order polynomial

y=f"(x)
f7(x) = h(x) = g(x;6)
suchthatvX eL h(X)=Yy,
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

= How many training examples are needed so that the tightest rectangle S which will constitute our
hypothesis, will probably be approximately corregt?
=  We want to be confident (above a level) that *

= ... the error probability is bounded by some value

= A concept class C is called PAC-learnable if there exists a PAC-learning algorithm such that,
for any €0 and 0>0, there exists a fixed sample size such that, for any concept ceC and for

any probability distribution on X, the learning algorithm produces a probably-approximately-
correct hypothesis h

= a (PAC) probably-approximately-correct hypothesis h is one that has error at most ¢ with probability at
least 1-0.
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PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

" |n PAC learning, given a class C and examples drawn from some unknown but fixed
distribution p(X), we want to find the number of examples N, such that with probability
at least 1-0, h has error at most € ?  (Blumer et al., 1989)

P(C4h <¢) >1-d

where CAh is (the area of) “the region of difference between C and h”, and 6>0, £>0.



MODEL COMPLEXITY VS. NOISE

<A
Use the simpler one because !
= Simpler to use (lower computational complexity) . - -
= Easier to train (lower space complexity) e i = _|sz
= Easier to explain (more interpretable) P a? l S
= Generalizes better (Occam’s razor) ; S | ©
l . ) - ra
S
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MODEL SELECTION & GENERALIZATION

" [ earning is an ill-posed problem data is not sufficient to find a unique solution
= The need for inductive bias, assumptions about FH
= Generalization: How well a model performs on new data

= Different machines have different amounts of “power?”.

Tradeoff between:

= More power: Can model more complex classifiers but might overfit.
= Less power: Not going to overfit, but restricted in what it can model.
= Overfitting: /{ more complex than C or f

= Underfitting: H less complex than C or f



MACHINE LEARNING: IN SEARCH OF GOOD FUNCTIONS

" Model and Learning

High Bias Low Bias
y = f*(®) B ) Low Varisnce nghVaTnce
7)) = h(x) = g(x%;0) £
such that Vx; € 8 h(x)) =y, §
% Test Sample
&
® Linear models /
Training Sample
A(E) = g( ) Oty + b)

Low High
Model Complexity
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TRIPLE TRADE-OFF

= There is a trade-off between three factors (Dietterich, 2003):
|, Complexity of H, c(H),
2. Training set size, N,

3. Generalization error, E, on new data

O AsNTEL
O Asc(H) T, first EV and then ET



SUPPORT VECTOR MACHINES

= SupportVector Machines (SVMs) are a machine learning paradigm based on the statistical
learning theory [Vapnik, 1995]

= No need to remember everything, just the discriminating instances (i.e. the support vectors, SV)

= The classifier corresponds to the linear combination of SVs

l
h(x) =sgn(w-x+b) = Sgn(z aj b)
Varl . \ J=1
Y

[
»

Only the dot product is required

Support
[ ]
Support Vectors e . Vectors
l"::: .......... 3_....» .0 ° °
0’..'...‘ ‘_‘ ° °

44

Margin




LINEAR CLASSIFIERS AND SEPARABILITY

= |n a R?% space, 3 point can always be separable by a linear classifier

= but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]

= One solution could be a more complex classifier

>
(-
e ?

= Risk of over-fitting




LINEAR CLASSIFIERS AND SEPARABILITY (2)

= ... but things change when projecting instances in a higher dimension feature space through a function ¢

= |DEA:It is better to have a more complex feature space instead of a more complex function

A

v



SVM FIRST ADVANTAGE: THE KERNEL TRICK

MAKING EXAMPLES LINEARLY SEPARABLE

= Mapping data in a (richer) feature space where linear separability holds

x — O(x) (attributes —>features)
A ¢ N A
[
. . P a0
Y
@9 @ @O
[ [ P .
@9 e o
< @ O .
. . N I
. - /
N\
- b S Il
N < |
~ /
g —Bg— —
Input space Implicit kernel space 1

N



KERNELS AS ... EMBEDDING TOOLS:AN NLP EXAMPLE

= Semantic Tree Kernels allows generating vectors that reflect syntactic/semantic information of sentences

= Who is the tallest man in the world ?

root<*®: * who:w>

copciwln::_;l; V> nsubj <who::w,man:n>
//,/’I\HH_H“ __________——:__d__'_'_____——_:___::f‘:::‘-ﬁ_x __—__‘—_:_:—__:EE_—_—_—_—___
VBZ cop be:v det<man:n,the:d> amod<man:ntallest:j> prep-in<man::n,world::n> NN nsubj man:n
(__/’T ___,__-’)7“-\‘\_ —
.-/ f‘\\ ..--“’fr /( \‘»5 .fﬁ_ﬁ?ﬁa"‘?%‘———_.
DT det the:xd JIS amod tallest::j det<world::nthe::d> NN prep-in world:n
(_,/T‘\a,\
— ! .
DT det the:d A
. o
= What are the most similar trees/vectors/sentences!? O
= Who is the richest woman in the world ? 0 O

= Who is the richest person in the world ?
= Who is the fastest swimmer in the world ?

= Who was murdered yesterday by the terrorist group?




DIFFERENT VIEWS ON LEARNING

Output
Output Output Rt
features
Additional
Output Mapping from Mapping from layers of more
! features features abstract
features
Hz_mrl— Hz_m[i— Simple
designed designed Features
features
program features
Input Input Input Input
A Deep
Rule-based Cla::s?u- learning
- ] machine
systems learning Representation

learning

from Goodfellow et al., Deep Learning MIT book



RETI NEURALI

PERCETTRONI E MULTILAYER PERCEPTRONS




NN HISTORY

from (Wang&Raj, 2017):

Wang, Haohan; Raj, Bhiksha,
On the Origin of Deep Learning,

https://arxiv.org/abs/1702.07800 , Feb2017

Table 1: Major milestones that will be covered in this paper

Year Contributer Contribution
. introduced Associationism, started the history of human’s
300 BC Aristotle _ . -
attempt to understand brain.
: introduced Neural Groupings as the earliest models of
1873 Alexander Bain .. pims . .
neural network, inspired Hebbian Learning Rule.
- introduced MCP Model, which is considered as the
1943 MeCulloch & Pitts i '
ancestor of Artificial Neural Model.
considered as the father of neural networks, introduced
1949 Donald Hebh Hebbian Learning Rule, which lays the foundation of
modern neural network.
introdueed the first perceptron, which highly resembles
1958 Frank Rosenhlatt P P ' B
modern perceptron.
1974 Paul Werbos introduced Backpropagation
1980 Teuvo Kohonen introduced Self Organizing Map
_ . introduced Neocogitron, which inspired Convolutional
Kunihiko Fukushima )
Neural Network
1982 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine
introduced Harmonium, which is later known as Restricted
Paul Smolensky .
1986 Boltzmann Machine
Michael I. Jordan defined and introduced Recurrent Neural Network
. . introduced LeNet, showed the possibility of deep neural
1990 Yann LeCun . . P ) P
networks in practice
1007 Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
Hochreiter & introduced LSTM, solved the problem of vanishing
Schmidhuber gradient in recurrent neural networks
introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.
Salakhutdinov & . :
2009 . introduced Deep Boltzmann Machines
Hinton
. introduced Dropout, an efficient way of training neural
2012 Geoffrey Hinton pout, ¥ =

networks



https://arxiv.org/abs/1702.07800

Demystifying neural networks

Neural networks come with
their own terminological
baggage

... just like SVMs

But if you understand how
logistic regression or maxent
models work

Then you already understand the
operation of a basic neural
network neuron!

22

A single neuron
A computational unit with n (3) inputs
and 1 output
and parameters W, b

\ Inputs Activation Output

function

Bias unit corresponds to intercept term



- b: We can have an “always on”
hw,b ()C) = f(W X+ b) «—— feature, which gives a class prior,

or separate it out, as a bias term

1

f(Z)=Te_Z 1/’

x | J/n 1 |
2 -6 -4 -2 0 2 4 6
—> h,, 5(x)
X3
+1 w, b

are the parameters of this neuron
i.e., this logistic regression model




NEURAL NETWORKS:THE IBASIC IDEA

A heural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!




NEURAL NETWORKS

input layer hidden layer output layer

Each circle represent a neuron (or unit)

= 3 input, 3 hidden and | output

n=3 is the number of layers

S;denotes the number of units in layer | p—b
hy(X)
Layers:
Layer L,
= layer ] is denoted as L,
= Layer ] and I+1 are connected by a matrix W of parameters £
= W®,; connects neuron jin layer /with neuron 7in layer /+1 Layerl, Layer L,

b(])j is the bias associated to neuron I in layer [+1



ADDING LAYERS ...

" From simple linear laws ...
h(x) = g(X;0,0) = g(>_ 9nxa+Db)

= to feedforward structures. It can be made dependent eh 9,{equence of functions g(’) and

g, ..., gl that give rise to a structured hypothﬁsi's: /

7~ /
() = g (00" b).67 b?) -
:W(Z)g(Z)(g(l)(\N(l) ,;(’+b(1))+b(2)

= Hidden layers
h® (;() _ g(l) (W @y b(l))



Deep Neural Network

1
ADDING LAYERS ... 505 o
" From simple linear laws ... P e

h(X) — g (X’ 9, b) — g (z ean + b) Hidden Layer1 HiddenLayer2  Hidden Layer3
n

= to feedforward structures.They depend on a sequence of functions g(V), g®?, .. |
g that give rise to structured hypothesis

h(x)= g% (g* P (..g0x8" b®)..);8" " b*D);5" p®)
_ g(k)(\N(k)g(k_l)(\N(k_l)...g(l)(\N(l) ,;(’_|_b(1))._.)_|_b(k—l))_I_b(k—l)))

= Hidden layers
hD(x)= g@WDPgiD(x: 8" b0 D) 4+bD  forj=2,.. k-1




REPRESENTATION AND LEARNING:THE ROLE OF DEPTH

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer

(mputpixel)  Zeiler and Fergus (2014)




PERCEPTRON AND NON-LINEAR ACTIVATION FUNCTIONS

= We can adopt the sigmoid function instead of the sgn() 1

= to bound the final values between 0 and |
® can be interpreted as probabilities of belonging to a class

= belonging threshold is “>0.5"

® |t remains a linear classifier

a(z)

A(E) = g() OnXn +b)




Binary Step Function

Leaky ReLU

max(0.1* x,x)

max(0.1* x,x)

Linear

Sigmoid / Logistic

Parametric ReLU

f(y)




TRAINING MLPS: BACK-PROPAGATION

= How are parameters of the network,i.e. W, w and ¢, b defined?
= This is the role of the training algorithm for which:
h@) =g P (g% (g8 b0 :8 b4 0)6" b))
_ g(fcﬁ (Wf(k)g(k—ﬂ (Wr(fc—l)mg(l)(ﬂr(lj -}+b(1))...)+b(k_lj)+b(k_lj))
is an accurate approximation of f*

= The learning process in MLPs is based on two notions:
= The optimization local to individual neurons

" The adjustments to the overall network by propagation backwards from the output
(where the error manifests) through all the hidden layers.
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Target: 1.0

'Ooéutput layer
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Updating the weights using Backpropagation




HOW TO INDUCE THE HYPOTHESIS H FROM EXAMPLES

= Learn the parameters # and b

= To find these we look at the past data (i.e. training data) optimizing an objective
function

= Objective function: the error we make on the training data

= the sum of differences between the decision function h and the label y

®m also called Loss Function or Cost Function

3(0,6)= Y (h(;0,b) ~ y )



A GENERAL TRAINING PROCEDURE: STOCHASTIC GRADIENT

DESCENT

= Optimizing ] means minimizing it
" it measures the errors we make on the training data.

= We can iterate over examples and update the parameters in the direction of
smaller costs

= we aim at finding the minimum of that function

0, =6, —alb,
= Concretely, 0, =6, —alb,
b=b—aAb

" (1 is a meta-parameter, the learning rate

= A are the partial derivatives of the cost function wrt each parameter



WHY SGD?

" Weights are updated using the partial derivatives

= Derivative pushes down the cost following the steepest descent path on the error curve

100
o~ T5:
50

J (Hiv .H:

25+

10

9, 20 -20 2.



SGD PROCEDURE

® Choose an initial random values for 6 and b
® Choose a learning rate

®  Repeat until stop criterion is met:
" Pick a random training example x(i)

= Update the parameters with

6, = 6, — a6,
6, =0, — alb,
b=b-aAb

" We can stop

= when the parameters do not change or,

= the number of iteration exceeds a certain upper bound
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LEARNING RATE: LOW VALUES

amall Learning Rate
sl Conyergence ]
= make the algorithm converge slowly
® jtis a conservative and safer choice

= However, it implies very long training

6, = 6, — a6,
6, =6, —ahb,

‘ b=b-aAb
h(x)




LEARNING RATE: HIGH VALUES

A
Large Learning Rate
Divergence!
= make the algorithm converge slowly
® jtis a conservative and safer choice
= However, it implies very long training
- — —
6, =6, — Ao,

‘ " b=b—aAb



HOW TO TRAIN A NN?

"  We can re-use the gradient descent algorithm

= define a cost function

= compute the partial derivatives wrt to all the parameters
= As the network models function composition h(z(x))

= we are going to exploit the chain rule (again) 9h 9h %z
= Setup: 9x B 97 9x

= we have a training set of m examples

= {GD YD), ..., GOV yM))

= xare the inputs and y are the labels




COST FUNCTION OF A NN

= Given a single training example (x,)7) the cost is

1
](W'b;xry) = Eth,b(x) - y|2

= For the whole training set /is the mean of the errors pIus a regularization term (weight decay)

—1 S; Si41

J(W,b) = z](w b x® 5 D) £ S‘ SN oy
=1 i= 1] 1
=—2<—|hWb<x<>> yOP) +5 7 > > wdy
=1 i=1 j=1

= ) controls the importance of the two terms (it has a similar role to the C parameter in SVM)



... DIGRESSION: ON REGULARIZATION

= “any modification we make to a learning algorithm
that is intended to reduce its generalization error
but not its training error.”

= |n practical deep learning scenarios: the best fitting model (in the sense of minimizing generalization
error) is a large model that has been regularized appropriately

= Many regularization approaches are based on limiting the capacity of models, such as neural networks, linear
regression, or logistic regression, by adding a parameter norm penalty QQ(8) to the objective function |

= Regularization methods:
= VWWEIGHT DECAY (ridge regression)
= ... CONSTRAINED OPTIMIZATION
= DATA AUGMENTATION

" EARLY STOPPING



SOME CONSIDERATIONS

= Randomly initialize the parameters of the network

= for symmetry breaking

= Remember that the function g is a non-linear activation function

= if gis the sigmoid g(z) =
1+e™

9'(z) =(1-9(2))9(z)

= Activations values can be cached from the forward propagation step!
1o (1 l l HNNC
g =0 -9@#"Ng#) = A=K
= [f you must perform multi-classification

= there will be an output unit for each of the labels



SOME CONSIDERATIONS (2)

" How to stop and select the best model?

=  Waiting the iteration in which the cost function doesn’t change significantly

= Risk of overfitting

= Early stopping

"  Provide hints as to how many iterations can be run before overfitting 0.20 . ' ; |
+—e Training set loss

= Split the original training set into a new training set and a validation set o151 —  Validation set loss L

®  Train only on the training set and evaluate the error on the validation set

Loss (negative log-likelihood)

0.10 f4 _
= Stop training as soon as the error is higher than it was the last time .WM
0.05 |- i
= Use the weights the network had in that previous step
0.00 ‘ ‘
= Dropout 0 50 100 150 200 250

.. . .. Time (epochs)
= another form of regularization to avoid overfitting data

® during training (only) randomly “turn off” some of the neurons of a layer

= it prevents co-adaptation of units between layers



DROPOUT (SVRIVASTAVA ET AL., 2014)

= Dropout can be interpreted as a way of regularizing a neural network by adding noise to its hidden units.

= [t speeds-up the learning algorithm through model averaging

It helps in reducing the risk of greedily promote simplistic solutions

= |t can be applied to individual steps or in averaging mode

Randomly setting a fraction rate of input
units to 0 at each update during training time.

a) Standard Neural Net (b) After applying dropout.



DROUPOUT: EFFECTS

Test Error
46 T

— 15 frames 3 layers 2000 units
— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units ||
— 31 frames 4 layers 4000 units

42

N
o

Classification Error %
w
(o]

v

34

' finetuning méjt dropout
\ finetuning with dropout

A L INDN G0

» AN A A 00 |

30

0 50 100 150 200
Epochs

Fig. 2: The frame classification error rate on the core test set of the TIMIT benchmark. Com-
parison of standard and dropout finetuning for different network architectures. Dropout of 50%
of the hidden units and 20% of the input units improves classification.



DROPOUT: EFFECTS (2)

Training Set Error Test Set Error

50 T 40 -
— 2000-1000-1000-50 — 2000-1000-1000-50
45 — 2000-2000-1000-50 | — 2000-2000-1000-50
38

40
2 35 * 36 training without dropout
5 5
‘230f i
=] 2131
Sl /‘ s
ﬁ training with dropout E
8 20l 8 32 training with dropout

training without dropout \
15} \ =
30 f
10
5 '} A Il L 28 I 1 ' '
0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs
(a) (b)

Fig. 7: Classification error rate on the (a) training and (b) validation sets of the Reuters dataset
as learning progresses. The training error 1s computed using the stochastic nets.
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CONVOLUTIONAL NEURAL NETWORKS (LE CUN, 1998)

Mainly used for images related tasks

=  image classification

= face detection

u etc...

Learn feature representations

= by convolving over the input

= with a filter, that slides over the input image
Compositionality (local)

= Each filter composes a local patch of lower-level features into a higher-level
representation

Location Invariance

= the detection of specific patterns is independent of where it occurs

0 1

1 0

0 1
1x1 1x0 1x1 0 0
0,1,/1,1|0 4
Oxl OxCI 1x1 1 1
0j]0|1(|1|0
0(1(1(0]|0

Convolved
Image Feature
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W+ Jz vy +  kz ky + Iz

Figure 9.1: An example of 2-D convolution without kernel flipping. We restrict the output
to only positions where the kernel lies entirely within the image, called “valid” convolution
in some contexts. We draw boxes with arrows to indicate how the upper-left element of
the output tensor is formed by applying the kernel to the corresponding upper-left region
of the input tensor.



A FUTHER EXAMPLE OF:. CONVOLUTION WITH POOLING,AND

DECIMATION OPERATIONS

Filter® Imagel Convolution Max@oolingl Decimationf

e oy

R Y = P =

(=]

L= =P u—;@-—

AW
BRB
BRB
ER=RE

0
0
0
. 1], o
) 1.1@0
2 U

PR ww
HFEENNBRB®
BEREB8S8
BER8B88
EEEEBEBHB

EBRRERR
BEBRRRR

= An image is convolved with a filter; curved rectangular regions in the first large matrix depict a random
set of image locations

= Maximum values within small 2%2 regions are indicated in bold in the central matrix

" The results are pooled, using max-pooling then decimated by a factor of two, to yield the final matrix



CONVOLUTIONAL NEURAL NETWORKS

= CNNs automatically learn the parameters of the filters

= afilter is a matrix of parameters
= the key aspect is that a filter is adopted for the whole image

= Convolution can be applied in multiple layers

= alayer 14+1 is computed by convolving over output produced in layer |

= Pooling is an operation often adopted for taking the most informative features that are learned after a convolution step

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output Predictions

i |
) |

dog (0.01)

B cat (0.04)
% boat (0.94)
bird (0.02)

-

- - ] ]

— O i
—— e = =




POOLING AND SUBSAMPLING LAYERS

" What are the consequences of backpropagating gradients through max or average pooling layers?

o : the units that are responsible for the maximum within each zone j, k —the “winning
units”— are the only to get the backpropagated gradient

o : the averaging is simply a special type of convolution with a fixed kernel that
computes the (possibly weighted) average of pixels in a zone

= the required gradients are therefore like std conv. layers

= The subsampling step either samples every n" output, or avoids needless computation by only evaluating
every n" pooling computation



TRAINING IN CNN: BACKPROPAGATION AND MAX POOLING

= A Max Pooling layer can’t be trained because it doesn’t actually have any weights

= [t still supports a method for it to calculate gradients

= How is dL / dinputs ?

= An input pixel that isn’t the max value in its 2x2 block have zero marginal effect on the loss, as any slightly change of its value
wouldn’t change the output at all!

= JL / dinputs = 0 for any non-max pixels.

= On the other hand, an input pixel that is the max value would have its value passed through to the output, so
doutput / dinput = |, meaning dL / dinput = AL / doutput.



TRAINING A CNN: TERMINOLOGY

Input Size: 6 © Input (6, 6) Output (4, 4)
.:: |
Padding: 2 ©
. ? ///7
Kernel Size: 4
-—@ —— —*
Stride: 2 ¢
—.

& Hover over the matrices to change kernel position.




DIMENSIONS

" The dimension of the output of a convolution is the following

Input Size: 6 A | InleJtm(6 6) Output (4, 4)
o—
Padding: 2 <
o—— InputD — KernelD + 2PaddingD
Kernel Size: 4 0= StrideD +1
-
Stride: 2 ¢
=@

& Hover over the matrices to change kernel position.



CONVOLUTIONAL NEURAL NETWORKS

= Convolutional networks (LeCun,1998) are neural networks for processing data with a grid-like
topology (e.g. 2D images, time-series data, texts)

= Convolution is a mathematical operation obtained by combining two functions

= |n CNNs at least one layer is expressed through a convolution matrix
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THE IMAGENET CHALLENGE

® Crucial in demonstrating the effectiveness of deep CNNs
= Task: recognize object categories in Internet imagery

= The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) classification
task - classify image from Flickr and other search engines into | of 1000 possible object
categories

= Serves as a standard benchmark for deep learning

= The imagery was hand-labeled based on the presence or absence of an object belonging
to these categories. |.2 million images in the training set with 732-1300 training images
available per class

= A random subset of 50,000 images was used as the validation set,and 100,000 images
were used for the test set where there are 50 and 100 images per class respectively



Goal

ImageNet
ILSVRC

 Qver 1
* Rough

. . Collect ¢ Annual competition of image classification at large scale

Turk * 1.2Mimages in 1K categories
_+» Classification: make 5 guesses about the image label




Research

Revolution of Depth

152 layers

\ 24.7
[ 22 layers 19 Iayers

\67

3 57 I_ Eoia: I [ 8 layers ] ‘ shallow

ILSVRC'1S  ILSVRC'14 ILSVRC'14  ILSVRC'13 JILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

ICCV D

[C——— Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.




ILSVRC2014 EXAMPLES
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DEEP CONVOLUTIONAL NETWORKS AND THEIR SCALE

Inception-vad
80 4 80 1 7 ST
- Inceptnon v3 | ResNet-152
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.


https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

AN EXAMPLE: ALEXNET (8 LAYERYS)

224

ENe
_____ ENN
3
57 128 )
<\ .
=
s| | 3y
: 27 ENE
3 -
Max. 128
pooling
48

3\ R ,
‘:::_ / 3 l -~
103 193 2048 \ / 2048 \dense

13- 13 13

i3 S 13 dense’| [dense f

I 1000

192 192 128 Max

Max pooling 2048 2048
pooling

AlexNet won the 2012 ImageNet competition with a top-5 error rate of 15.3%,

compared to the second place top-5 error rate of 26.2%



128 Max

204%

Max Max pooling

ALEXNET: OVERVIEW A

Layer f\::?::sl Filter size Stride Padding Size c:‘:;;ature ﬁzt:é::;?‘n
Input - - - - 227 x 227 x 3 -
Conv 1 | 96 11x11 | 4 - 55 x 55 x 96 RelLU
Max Pool 1 | - 3x3 | 2 - 27 x 27 x 96 -
Conv 2 256 5x5 1 2 27 x 27 x 256 RelLU
Max Pool 2 | - 3x3 | 2 - 13 x 13 x 256 |
Conv 3 384 3x3 <! 1 13 x 13 x 384 RelLU
Conv 4 384 3x3 1 1 13 x 13 x 384 RelLU
Conv 5 256 3x3 1 1 13 x 13 x 256 RelLU
Max Pool 3 | - 3x3 2 - 6 x 6 x 256 -
Dropout 1 rate = 0.5 - - - 6 X 6 x 256 -
Fully Connected 1 - - - - 4096 RelLU
Dropout 2 rate = 0.5 - - - 4096
Fully Connected 2 - - - - 4096 RelLU

Fully Connected 3 - - - - 1000 Softmax



ALEXNET:THE ARCHITECTURE

= |t has 8 layers with learnable parameters.

®  The input to the Model is RGB images.

= |t has 5 convolution layers with a combination of max-pooling layers.
= Then it has 3 fully connected layers.

"  The activation function used in all layers is Relu, whereas Softmax is used in the
output layer is

= |t used two Dropout layers.

= The total number of parameters in this architecture is 62.3 million.



WHAT HAS BEEN LEARNT?

motor scooter
motor scooter

mite

container ship

0 black widow lifeboat go-kart jaguar
| cockroach amphibian moped cheetah
| tick fireboat bumper car snow leopard
|

drilling platform

golfcart

Egyptlan cat

ac agascar cat

musnroom erry
convertible agaric dalmatian Squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon # gill fungus |ffordshire bullterrier indri
fire engine doad-man's-ﬂngars' currant howler monkey | |'s

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.



CURRENT CNNS:YOLO (BOCHKOVSKIY ET AL.(2020))

Bochkovskiy et al.(2020), Bochkovskiy,A.,Wang, C.-Y,, Liao, H.-Y.~M.,
YOLOv4: Optimal Speed and Accuracy of Object Detection, 2020,
https://arxiv.org/abs/2004.10934v .

S x S grid on input

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S' X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S xS x (B=x5+ C) tensor.


https://arxiv.org/abs/2004.10934v1
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S xS grid on input

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S x S x (B=x5+ C) tensor.

Is there an object?

Bounding box

Class labels



YOLO: THE ARCHITECTURE
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Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.
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RECURRENT NEURAL NETWORKS

For example, consider the classical form of a dynamical system:

s = f(s"71:0), (10.1)

where s(t) is called the state of the system.

Equation 10.1 is recurrent because the definition of s at time ¢ refers back to

the same definition at time ¢ — 1.
(g \———m oy
\

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time ¢, and the
function f maps the state at ¢ to the state at ¢ + 1. The same parameters (the same value

of 8 used to para,metn?e /) are used for all time steps.

: !
ol




TRAINING A RNN

—
Unfold
W s
/ N\
I pG)
\ /
) -~

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ¥ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U, hidden-to-hidden recurrent connections
parametrized by a weight matrix W, and hidden-to-output connections parametrized
by a weight matrix V. Equation 10.8 defines forward propagation in this model. (Left)
The RNN and its loss drawn with recurrent connections. (Right) The same seen as a
time-unfolded computational graph, where each node is now associated with one particular
time instance.
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Figure 9: Encoder-Decoder RNN Training Graph. Figure 11: biRNN over the sentence “the brown fox jumped .”



HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM

| # show # 0

|# f1ighi #0

|# from # 0

|# burbar # B-fromloc.city_name

|# to # 0

|# st. # B-toloc.city_name

|# louis # I-toloc.city_name

|# on # 0

| # monday # B-depart_date.day_name



HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM A
+———l———+

19 |x 178:1 |# BOS |y 128:1 [# O | Dense
19 |x 770:1 |# show ly 128:1 |# 0 N
19 |x 429:1 |# flights |y 128:1 |# O
19 |x 444:1 |# from ly 128:1 |# 0 T'L;;;'T
19 |x 272:1 |# burbank |y 48:1 |# B-fromloc.city_name fom o +
19 |x 851:1 |# to ly 128:1 |# 0 A
19 |x 789:1 |# st. |y 78:1 |# B-toloc.city_name +___l___+
19 |x 564:1 |# Touis |y 125:1 |# I-toloc.city_name | Embed
19 |x 654:1 |# on ly 128:1 |# 0 H
19 |x 601:1 |# monday ly 26:1 |# B-depart_date.day_name
19 |x 179:1 |# EOS |y 128:1 [# O



HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM

19
19
19
19
19
19
19
19
19
19
19

178:
770:
429:
444:
272:
851:
789:
564:
654:
601:
179:

R R R R R R R B R R R
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| #
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| #
| #
| #
| #
| #
| #
| #
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show
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from
burbank
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ly
ly
ly
ly
ly
ly
ly
ly
ly
ly

128:1
128:1
128:1
128:1
48:1

128:1
78:1

125:1
128:1
26:1

128:1

| #
| #
| #
| #
| #
| #
| #
| #
| #
| #
| #

0]
0]
0]
0]
B-fromloc.city_name
0]

B-toloc.city_name
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0]

B-depart_date.day_name
0]

y "o" "o" "o" "0o" "B-fromloc.city_name'
A A A A A
| | | | |
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APPLICAZIONI DELLE RETI NEURALI

IMMAGINI: IMAGE CLASSIFICATION, OBJECT DETECTION, ENCODING, MAP COLOURING




APPLICAZIONI DELLE RETI NEURALI

TESTI E IMMAGINI:AUTOMATIC CAPTIONING




APPLICAZIONI

IMAGE RETRIEVAL,VISUAL QUESTION ANSWERING




RETI NEURALI: APPLICAZIONI

ESEMPI ILLUSTRI E USE CASE INDUSTRIALI




IMAGE CAPTIONING: ADVANCED ARCHITECTURES

" [mage to captions

= Convolutional Neural Network to learn a representation of the image

= (Bi-directional) Recurrent Neural Network to generate a caption describing the image
® jts input is the representation computed from the CNN

® jts output is a sequence of words, i.e. the caption

“straw” “hat” END

-—
e ST

"baseball player is throwing ball

START Mstrawn Mhatn in game."



THE ARCHITECTURE
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ATTENTION:A BRODGE BETWEEN VISION AND LANGUAGE

A0.99)




INTEGRATED VISION AND LANGUAGE PROCESSING:

IMAGE CAPTIONING AND ATTENTION

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
I mountain in the background.



DALL-E History Collections

ESEMPI

+ New Chat

Today

(1 Hello and Hi

June

[J Canzone per Mamma
vibrant portrait painting of Salvador Dalf with a robotic half face a shiba inu wearing a beret and black turtleneck

February

[ Train Neural Model for NWM

January

(3 Newchat

a corgi’s head depicted as an explosion of




NEURAL ENCODING-DECODING FOR DALL-E

_ CLIP objective img
- " encoder
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.
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The emergence of maps in the memories of blind navigation agents

Map-building is an emergent phenomenon in the course of Al agents learning to navigate. It explains why we
can feed neural networks images with no explicit maps and can predict navigation policies.

Q)

e The Emergence of Maps in the Memories of Blind Navigation Agents shows
that giving an agent knowledge of only ego-motion (change in agent’s
location and orientation as it moves) and goal location is sufficient to
successfully navigate to the goal. Note that this agent does not have
any visual information as input and yet its success rates compared to
'sighted’ agents are very similar, only efficiency differs.

e The model doesn’t have any inductive bias towards mapping and is
trained with on-policy reinforcement learning. The only mechanism
that explains this ability is the memory of the LSTM.

e Itis possible to reconstruct metric maps and detect collisions solely

from the hidden state of this agent.
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DIAGNOSI MALATTIE PEDIATRICHE: UN WORKFLOW ORIENTATO AL ML

1.3 Milioni di EHRs Manuali e documentazione Tecnica
Dati di Referti da Collezoni di linee guida e

Laboratorio PACS consensi

Sintomi e
anamnesi

NLP & Deep
Metadatazione Learning:
pre-Training

Feature
Engineering

Malattie e descrittori dei DB Casi strutturati:
casi clinici storicizzati .
anagrafica e metadati

Evidence-based
563

Diagnosis da Liang H, et al.“Evaluation and accurate diagnoses of pediatric
diseases using artificial intelligence”, Nature Medicine, 2019



MEDICAL INFORMATION EXTRAC TION

(3
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EVIDENCE BASED DIAGNOSIS: RISULTATI (11,926 PAZIENTI)

Table 2 | lllustration of diagnostic performance of our Al model and physicians

Disease conditions Our model Physicians
Physician group1 Physician group 2 || Physician group 3 Physician group 4 Physician group 5

Asthma 0.920 0.801 0.837 0.904 0.890 0.935
Encephalitis 0.837 0.947 0.961 0.950 0.959 0.965
Gastrointestinal disease 0.865 0.818 0.872 0.854 0.896 0.893
Group: ‘Acute laryngitis' 0.786 0.808 0.730 0.879 0.940 0.943
Group: ‘Pneumonia’ 0.888 0.829 0.767 0.946 0.952 0.972
Group: ‘Sinusitis’ 0.932 0.839 0.797 0.896 0.873 0.870
Lower respiratory 0.803 0.803 0.815 0.910 0.903 0.935
Mouth-related diseases 0.897 0.818 0.872 0.854 0.896 0.893
Neuropsychiatric disease 0.895 0.925 0.963 0.960 0.962 0.906
Respiratory 0.935 0.808 0.769 0.89 0.907 0.917
Systemic or generalized 0.925 0.879 0.907 0.952 0.907 0944
Upper respiratory 0.929 0.817 0.754 0.884 0.916 0.916
Root 0.889 0.843 0.863 0.908 0.903 0.912
Average F1score 0.885 0.841 0.839 0.907 0.915 0.923




COMPAS: PROFILING

BERNARD PARKER
—_
LOW RISK 3 HGHrsk 10

= COMPAS dataset (Correctional Offender Management

Profiling for Alternative Sanctions)

= raccoglie dati nell'lambito della giustizia penale utilizzati

per prevedere il rischio di recidiva di un imputato.

" pubblicato da ProPublica nel 2016 sulla base dei dati
raccolti dalla contea di Broward.

Attributes Type Values #Missing values Description
sex Binary {Male, Female} 0 Sex
age Numerical [18 - 96] 0 Age in years
age_cat Categorical 3 0 Age category
race Categorical 6 0 Race
juv_fel_count Numerical [0 - 20] 0 The juvenile felony count
juv_misd_count  Numerical [0 - 13] 0 The juvenile misdemeanor count
juv_other_count  Numerical [0-17] 0 The juvenile other offenses count
priors_count Numerical [0 - 38] 0 The prior offenses count
c_charge_degree  Binary {F, M} 0 Charge degree of original crime
score_text Categorical 3 0 ProPublica-defined category of decile score
v_score_text Categorical 3 0 ProPublica-defined category of v_decile score
two_year_recid Binary {0, 1} 0 Whether the defendant is rearrested within two years

Caratteristiche Contiene 7.214 istanze.
Ogni imputato & descritto da 52 attributi
(31 categorici, 6 binari, |4 numerici e un
attributo nullo)

Task Lobiettivo € prevedere se un
individuo viene nuovamente arrestato
entro due anni dal primo arresto

Possibili rischi

Alcuni gruppi sociali (gli afroamericani)
hanno maggiori probabilita di essere
erroneamente etichettati come a rischio piu
elevato rispetto agli altri (i caucasici).
Eticamente ingiusto.

Obbiettivo: ottenere un sistema equo tra
gruppi sociali diversi.
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