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AGENDA

 CONVEGNO ON LINE 1: Martedì 10 Ottobre, ore 15.00 – 17.00

 Introduzione ai sistema informativi, Introduzione alle applicazioni data-driven: dalle basi di dati ai dati di addestramento 
per l’AI, Elementi di Data Management: dai modelli relazionali alle basi di conoscenza.

 CONVEGNO ON LINE 2: Martedì 17 Ottobre, ore 15.00 – 17.00

 Introduzione all’Intelligenza Artificiale: tra rappresentazione della conoscenza, ragionamento e apprendimento 
automatico

 CONVEGNO ON LINE 3: Martedì 31 Ottobre, ore 15.00 – 18.00

 Intelligenza nel trattamento dei dati strutturati e semi-strutturati: il Machine Learning

 CONVEGNO ON LINE 4: Martedì 10 Novembre, ore 15.00 – 18.00

 AI Generativa e Large Scale Language Models



OVERVIEW

 Il Machine Learning: definizioni e obbiettivi

 Statistical Learning Theory

 Le Reti Neurali: dai percettroni ai Transfomers

 Multilayer Perceptrons

 Le reti Convoluzionali e le immagini, Reti Ricorrenti, Reti Attenzionali e Autoencoders: i Trasformers

 Applicazioni avanzate ai dati non strutturati

 ImageNet: Image Processing, Classification

 Immagini e Testi: Automated Captioning

 Visual Question Answering

 Multimodality



MACHINE LEARNING
DEFINIZIONI ED OBBIETTIVI



COSA SIGNIFICA APPRENDERE DAI DATI?



LEARNING MACHINES
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MACHINE LEARNING: DEFINITION

▪ A computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E [Mitchell]

▪ Problem definition for a learning agent

▪ Task T

▪ Performance measure P

▪ Experience E



DESIGNING A LEARNING SYSTEM

1. Choosing the training experience

 Examples of best moves, games outcome …

2. Choosing the target function

 board-move, board-value, …

3. Choosing a representation for the target function

 linear function with weights (hypothesis space)

4. Choosing a learning algorithm for approximating the target function

 A method for parameter estimation



INDUCTIVE LEARNING: LEARN A FUNCTION FROM EXAMPLES

 Simplest form: learn a function from examples

f is the target function

An example is a pair (x, f(x))

Problem: find a hypothesis h

such that h ≈ f

given a training set of examples

(This is a highly simplified model of real learning:

 Ignores prior knowledge

 Assumes examples are given)



INDUCTIVE LEARNING METHOD

 Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples)

e.g., curve fitting:
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INDUCTIVE LEARNING METHOD

 Construct/adjust h to agree with f on training set

(h is consistent if it agrees with f on all examples)

E.g., curve fitting:

Ockham’s razor:  prefer the simplest hypothesis consistent with data

novacula Occami



INDUCTIVE SYSTEM

Acquire the model (H) 

through Machine 
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Using the Model, or 
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LEARNING DECISION TREES

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



ATTRIBUTE-BASED REPRESENTATIONS

 Examples described by attribute values (Boolean, discrete, continuous)

 E.g., situations where I will/won't wait for a table:

 Classification of examples is positive (T) or negative (F)



DECISION TREES

 One possible representation for hypotheses

 E.g., here is the “true” tree for deciding whether to wait:



EXPRESSIVENESS

 Decision trees can express any function of the input attributes.

 E.g., for Boolean functions, truth table row → path to leaf:

 Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f
nondeterministic in x) but it probably won't generalize to new examples

 Prefer to find more compact decision trees



DECISION TREE LEARNING

 Aim: find a small tree consistent with the training examples

 Idea: (recursively) choose "most significant" attribute as root of (sub)tree



CHOOSING AN ATTRIBUTE

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all 
negative"

 Patrons? is a better choice



PERFORMANCE MEASUREMENT

 How do we know that h ≈ f ?
1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size



PERFORMANCE MEASUREMENTS (2)

 Learnability depends on 

 realizable kind of performances vs.

 … non-realizable ones

 Non-realizability depends on 

 Missing attributes

 Limitation on the hypothesis space (e.g. non expressive functions)

 Redundant expressiveness is related to cases where a a largenumber of irrelevant attributes are used
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N-FOLD CROSS VALIDATION

 Data is split into n subsets of equal size

 Each subset in turn is used for testing and the remainders n-1 for training

 The metrics estimated in each round are averaged

5 fold splitting

Testing fold

Testing fold

Round 1

Round 5

…



MACHINE LEARNING TASKS

 SUPERVISED LEARNING DA ESEMPI

 CLASSIFICATION

 Approcci dicriminativi

 Approcci generative

 Outlier and deviation detection

 REGRESSION

 Dependency modeling

 Discovery di Associazioni/Relazioni, Sommari, 

Inferenza/Causalità

 SEQUENCE CLASSIFICATION

 Temporal learning 

 Trend analysis and change/anomaly detection

 UNSUPERVISED LEARNING

 Clustering

 Embedding ottimo: Enconding/Decoding

 Representation Learning for Images 

 PreTraining as optimal encoding

 REINFORCEMENT LEARNING

 Penalty/Reward function from the Environment

 Autonomous Systems

 Hard for complex problems



METODI DI ML: SELEZIONE DEI MODELLI

 Approcci discriminativi

 Lineari 

h(x) = sign( W ∙ x + b) 

 Approcci probabilistici

 Stima delle probabilità              attraverso un training set

 Modello generativo ed uso della inversione Bayesiana



PERCEPTRON (ROSENBLATT, 1958)

 Linear Classifier mimicking a neuron
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ADDING LAYERS …



RETI NEURALI PROFONDE



A SIMPLE DEMO ON TENSORFLOW

 Look at: https://playground.tensorflow.org/

https://playground.tensorflow.org/


ALTERNATIVE: MODELLI (BAYESIANI) GRAFICI



GRAMMATICHE PROBABILISTICHE: TRA SINTASSI & STATISTICA



APPRENDIMENTO SU SEQUENZE: HIDDEN MARKOV MODELS

 Stati (X) = Categorie/Concetti/Proprietà 

 Osservazioni (Y): simboli di un certo linguaggio

 Emissioni    vs.   Transizioni

 Applicazioni:

 Speech Recognition (Simboli: fonemi, Stati: punti di segmentazione) 

 Part-of-Speech (POS) tagging (Simboli: parole, Stati: categorie gramaticali)



STATISTICAL LEARNING THEORY
DALLA PAC LEARNABILITY AI PERCETTRONI



(VECTOR) SPACES, FUNCTIONS AND LEARNING

most specific hypothesis, S

most general hypothesis, G

The h  H floats between S and G to be consistent

It makes up the version space

(Mitchell, 1997)
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PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 How many training examples are needed so that the tightest rectangle S which will constitute our 

hypothesis, will probably be approximately correct?

 We want to be confident (above a level) that 

 … the error probability is bounded by some value

 A  concept  class  C is  called  PAC-learnable if  there  exists  a  PAC-learning  algorithm  such that,  

for  any ε>0 and δ>0,  there  exists  a fixed  sample  size  such  that,  for  any  concept  cC and  for  

any  probability  distribution  on  X,  the  learning  algorithm  produces  a  probably-approximately-

correct   hypothesis h

 a  (PAC) probably-approximately-correct hypothesis h is one that  has error at most ε with  probability at 

least 1-δ.

38
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 In PAC learning, given a class C and examples drawn from some unknown but fixed 
distribution p(x), we want to find the number of examples N, such that with probability 
at least 1-δ, h has error at most ε ? (Blumer et al., 1989)

P( CDh   )  1-d

where CDh is (the area of) “the region of difference between C and h”,  and δ>0, ε>0.

PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

39



LECTURE NOTES FOR E ALPAYDIN 2004 INTRODUCTİON 
TO MACHİNE LEARNİNG © THE MIT PRESS (V1.1)
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Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (Occam’s razor)

MODEL COMPLEXİTYVS. NOISE



MODEL SELECTİON & GENERALİZATİON

 Learning is an ill-posed problem; data is not sufficient to find a unique solution

 The need for inductive bias, assumptions about H

 Generalization: How well a model performs on new data

 Different machines have different amounts of “power”.

Tradeoff between:

 More power: Can model more complex classifiers but might overfit.

 Less power: Not going to overfit, but restricted in what it can model.

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f

41



MACHINE LEARNING: IN SEARCH OF GOOD FUNCTIONS

 Model and Learning

 Linear models

𝑦 = 𝑓∗( Ԧ𝑥)

𝑓∗( Ԧ𝑥) ≈ ℎ( Ԧ𝑥) = 𝑔( Ԧ𝑥; 𝜃)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀ Ԧ𝑥𝑙 ∈ 𝔏 ℎ( Ԧ𝑥𝑙) ≈ 𝑦𝑙

ℎ Ԧ𝑥 = 𝑔( ෍ 𝜃𝑛𝑥𝑛 + 𝑏)



TRIPLE TRADE-OFF

 There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of H, c(H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N , E

 As c(H) , first E and then E

LECTURE NOTES FOR E ALPAYDIN 2004 INTRODUCTİON TO MACHİNE LEARNİNG © THE 
MIT PRESS (V1.1)
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SUPPORT VECTOR MACHINES

 Support Vector Machines (SVMs) are a machine learning paradigm based on the statistical 

learning theory [Vapnik, 1995]

 No need to remember everything, just the discriminating instances (i.e. the support vectors, SV)

 The classifier corresponds to the linear combination of SVs

44
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ℎ 𝑥 = 𝑠𝑔𝑛 𝑤 ∙ 𝑥 + 𝑏 = 𝑠𝑔𝑛(෍
𝐽=1
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LINEAR CLASSIFIERS AND SEPARABILITY

 In a R2 space, 3 point can always be separable by a linear classifier

 but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]

 One solution could be a more complex classifier

 Risk of over-fitting

?



LINEAR CLASSIFIERS AND SEPARABILITY (2)

 … but things change when projecting instances in a higher dimension feature space through a function 

 IDEA: It is better to have a more complex feature space instead of a more complex function



SVM FIRST ADVANTAGE: THE KERNEL TRICK

MAKING EXAMPLES LINEARLY SEPARABLE

 Mapping data in a (richer) feature space where linear separability holds

Ԧ𝑥 →  Ԧ𝑥 (attributes        features)→


Input space Implicit kernel space



KERNELS AS … EMBEDDING TOOLS: AN NLP EXAMPLE

 Semantic Tree Kernels allows generating vectors that reflect syntactic/semantic information of sentences

 Who is the tallest man in the world ? 

 What are the most similar trees/vectors/sentences?

 Who is the richest woman in the world ? 

 Who is the richest person in the world ? 

 Who is the fastest swimmer in the world ? 

 Who was murdered yesterday by the terrorist group?

 ….



DIFFERENT VIEWS ON LEARNING

from Goodfellow et al., Deep Learning MIT book 



RETI NEURALI
PERCETTRONI E MULTILAYER PERCEPTRONS



NN HISTORY

from (Wang&Raj, 2017):

Wang, Haohan; Raj, Bhiksha, 

On the Origin of Deep Learning, 

https://arxiv.org/abs/1702.07800 , Feb2017

https://arxiv.org/abs/1702.07800






NEURAL NETWORKS: THE IBASIC IDEA



NEURAL NETWORKS

 Each circle represent a neuron (or unit)

 3 input, 3 hidden and 1 output

 nl=3 is the number of layers

 sl denotes the number of units in layer l

 Layers:

 Layer l is denoted as Ll

 Layer l and l+1 are connected by a matrix W(l)  of parameters

 W(l)
i,j connects neuron j in layer l with neuron i in layer l+1

 b(l)
i is the bias associated to neuron I in layer l+1

input layer hidden layer output layer



ADDING LAYERS …

 From simple linear laws …

 to feedforward structures. It can be made dependent on a sequence of functions g(1) and 
g(2), …, g(k) that give rise to a structured hypothesis:

 Hidden layers
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ADDING LAYERS …

 From simple linear laws …

 to feedforward structures. They depend on a sequence of functions g(1), g(2), …, 

g(k) that give rise to structured hypothesis

 Hidden layers
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REPRESENTATION AND LEARNING: THE ROLE OF DEPTH



PERCEPTRON AND NON-LINEAR ACTIVATION FUNCTIONS

 We can adopt the sigmoid function instead of the sgn()

 to bound the final values between 0 and 1

 can be interpreted as probabilities of belonging to a class

 belonging threshold is  “>0.5”

 It remains a linear classifier

𝑔(𝑧) =
1

1 + 𝑒−𝑧

ℎ( Ԧ𝑥) = 𝑔(෍

𝑛

𝜃𝑛 𝑥𝑛 + 𝑏)





TRAINING MLPS: BACK-PROPAGATION

 How are parameters of the network, i.e.  W, w and c, b defined?

 This is the role of the training algorithm for which:

is an accurate approximation of f*

 The learning process in MLPs is based on two notions:

 The optimization local to individual neurons

 The adjustments to the overall network by propagation backwards from the output 
(where the error manifests) through all the hidden layers.







HOW TO INDUCE THE HYPOTHESIS H FROM EXAMPLES

 Learn the parameters θ and b

 To find these we look at the past data (i.e. training data) optimizing an objective 

function

 Objective function: the error we make on the training data

 the sum of differences between the decision function h and the label y

 also called Loss Function or Cost Function


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A GENERAL TRAINING PROCEDURE: STOCHASTIC GRADIENT 

DESCENT

 Optimizing J means minimizing it

 it measures the errors we make on the training data.

 We can iterate over examples and update the parameters in the direction of 
smaller costs

 we aim at finding the minimum of that function

 Concretely,

 α is a meta-parameter, the learning rate

 Δ are the partial derivatives of the cost function wrt each parameter

bbb D−=

D−=

D−=


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WHY SGD?

 Weights are updated using the partial derivatives

 Derivative pushes down the cost following the steepest descent path on the error curve



SGD PROCEDURE

 Choose an initial random values for θ and  b

 Choose a learning rate

 Repeat until stop criterion is met:

 Pick a random training example x(i)

 Update the parameters with

 We can stop

 when the parameters do not change or,

 the number of iteration exceeds a certain upper bound 
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LEARNING RATE: LOW VALUES

 make the algorithm converge slowly

 it is a conservative  and safer choice

 However, it implies very long training
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LEARNING RATE: HIGH VALUES

x1

x2

h(x)

θ1

θ2

b

 make the algorithm converge slowly

 it is a conservative  and safer choice

 However, it implies very long training
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HOW TO TRAIN A NN?

 We can re-use the gradient descent algorithm

 define a cost function

 compute the partial derivatives wrt to all the parameters

 As the network models function composition 

 we are going to exploit the chain rule (again)

 Setup:

 we have a training set of m examples

 {(x(1),y(1)), …, (x(m),y(m))}

 x are the inputs and y are the labels
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COST FUNCTION OF A NN

 Given a single training example (x,y) the cost is

 For the whole training set J is the mean of the errors plus a regularization term (weight decay)

 λ  controls the importance of the two terms (it has a similar role to the C parameter in SVM)
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… DIGRESSION: ON REGULARIZATION

 “any modification we make to a learning algorithm                      

that is intended to reduce its generalization error

but not its training error.” 

 In practical deep learning scenarios: the best fitting model (in the sense of minimizing generalization 

error) is a large model that has been regularized appropriately

 Many regularization approaches are based on limiting the capacity of models, such as neural networks, linear 

regression, or logistic regression, by adding a parameter norm penalty Ω(θ) to the objective function J

 Regularization methods:

 WEIGHT DECAY (ridge regression)

 … CONSTRAINED OPTIMIZATION

 DATA AUGMENTATION

 EARLY STOPPING



SOME CONSIDERATIONS

 Randomly initialize the parameters of the network

 for symmetry breaking

 Remember that the function g is a non-linear activation function

 if g is the sigmoid

 Activations values can be cached from the forward propagation step!

 If you must perform multi-classification

 there will be an output unit for each of the labels
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SOME CONSIDERATIONS (2)

 How to stop and select the best model?

 Waiting the iteration in which the cost function doesn’t change significantly

 Risk of overfitting

 Early stopping

 Provide hints as to how many iterations can be run before overfitting

 Split the original training set into a new training set and a validation set

 Train only on the training set and evaluate the error on the validation set 

 Stop training as soon as the error is higher than it was the last time

 Use the weights the network had in that previous step

 Dropout

 another form of regularization to avoid overfitting data

 during training (only) randomly “turn off” some of the neurons of a layer

 it prevents co-adaptation of units between layers



DROPOUT (SVRIVASTAVA ET AL., 2014)

 Dropout can be interpreted as a way of regularizing a neural network by adding noise to its hidden units.

 It speeds-up the learning algorithm through model averaging

 It helps in reducing the risk of greedily promote simplistic solutions

 It can be applied to individual steps or in averaging mode



 Drop-out effects in a speech-recognition task

DROUPOUT: EFFECTS



DROPOUT: EFFECTS (2)



RETI NEURALI
LE RETI CONVOLUZIONALI E LE IMMAGINI



CONVOLUTIONAL NEURAL NETWORKS (LE CUN, 1998)

 Mainly used for images related tasks

 image classification

 face detection

 etc…

 Learn feature representations

 by convolving over the input 

 with a filter, that slides over the input image

 Compositionality (local)

 Each filter composes a local patch of lower-level features into a higher-level 

representation

 Location Invariance

 the detection of specific patterns is independent of where it occurs





A FUTHER EXAMPLE OF: CONVOLUTION WITH POOLING, AND 

DECIMATION OPERATIONS

 An image is convolved with a filter; curved rectangular regions in the first large matrix depict a random 

set of image locations

 Maximum values within small 2×2 regions are indicated in bold in the central matrix 

 The results are pooled, using max-pooling then decimated by a factor of two, to yield the final matrix

-1					0					1					
-2					0					2					
-1					0					1	

3 	3 	0 	0 	2 	2 		
3 	3 	0 	0 	2 	2 		
4 	4 	2 	2 	2 	2 		
4 	4 	2 	2 	2 	2 		
1 	1 	3 	3 	0 	0 		
1 	1 	3 	3 	0 	0 		

3 	0 	2 		
4 	2 	2 		
1 	3 	0 		

Convolu on	 Max	Pooling	 Decima on	Filter	 Image	



CONVOLUTIONAL NEURAL NETWORKS

 CNNs automatically learn the parameters of the filters

 a filter is a matrix of parameters

 the key aspect is that a filter is adopted for the whole image

 Convolution can be applied in multiple layers

 a layer l+1 is computed by convolving over output produced in layer l

 Pooling is an operation often adopted for taking the most informative features that are learned after a convolution step



POOLING AND SUBSAMPLING LAYERS

 What are the consequences of backpropagating gradients through max or average pooling layers? 

 Max pooling: the units that are responsible for the maximum within each zone j, k —the “winning 

units”— are the only to get the backpropagated gradient

 Average pooling: the averaging is simply a special type of convolution with a fixed kernel that 

computes the (possibly weighted) average of pixels in a zone

 the required gradients are therefore like std conv. layers

 The subsampling step either samples every nth output, or avoids needless computation by only evaluating 

every nth pooling computation



TRAINING IN CNN: BACKPROPAGATION AND MAX POOLING

 A Max Pooling layer can’t be trained because it doesn’t actually have any weights

 It still supports a method for it to calculate gradients

 How is ∂L / ∂inputs ? 

 An input pixel that isn’t the max value in its 2x2 block have zero marginal effect on the loss, as any slightly change of its value 

wouldn’t change the output at all! 

 ∂L / ∂inputs = 0 for any non-max pixels. 

 On the other hand, an input pixel that is the max value would have its value passed through to the output, so 

∂output / ∂input = 1, meaning ∂L / ∂input = ∂L / ∂output.



TRAINING A CNN: TERMINOLOGY



DIMENSIONS

 The dimension of the output of a convolution is the following

𝑂 =
𝐼𝑛𝑝𝑢𝑡𝐷 − 𝐾𝑒𝑟𝑛𝑒𝑙𝐷 + 2𝑃𝑎𝑑𝑑𝑖𝑛𝑔𝐷

𝑆𝑡𝑟𝑖𝑑𝑒𝐷
+ 1



CONVOLUTIONAL NEURAL NETWORKS

 Convolutional networks (LeCun,1998) are neural networks for processing data with a grid-like 
topology (e.g. 2D images, time-series data, texts)

 Convolution is a mathematical operation obtained by combining two functions

 In CNNs at least one layer is expressed through a convolution matrix



UNA VISIONE ANIMATA …



THE IMAGENET CHALLENGE

 Crucial in demonstrating the effectiveness of deep CNNs

 Task: recognize object categories in Internet imagery 

 The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) classification 

task - classify image from Flickr and other search engines into 1 of 1000 possible object 

categories

 Serves as a standard benchmark for deep learning 

 The imagery was hand-labeled based on the presence or absence of an object belonging 

to these categories. 1.2 million images in the training set with 732-1300 training images 

available per class 

 A random subset of 50,000 images was used as the validation set, and 100,000 images 

were used for the test set where there are 50 and 100 images per class respectively







ILSVRC2014 EXAMPLES



DEEP CONVOLUTIONAL NETWORKS AND THEIR SCALE

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5


AN EXAMPLE: ALEXNET (8 LAYERS)

AlexNet won the 2012 ImageNet competition with a top-5 error rate of 15.3%, 

compared to the second place top-5 error rate of 26.2%



ALEXNET: OVERVIEW



ALEXNET: THE ARCHITECTURE

 It has 8 layers with learnable parameters.

 The input to the Model is RGB images.

 It has 5 convolution layers with a combination of max-pooling layers.

 Then it has 3 fully connected layers.

 The activation function used in all layers is Relu, whereas Softmax is used in the 

output layer is

 It used two Dropout layers.

 The total number of parameters in this architecture is 62.3 million.



WHAT HAS BEEN LEARNT?



CURRENT CNNS: YOLO (BOCHKOVSKIY ET AL.(2020))

Bochkovskiy et al.(2020), Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.~M. , 

YOLOv4: Optimal Speed and Accuracy of Object Detection, 2020, 

https://arxiv.org/abs/2004.10934v1. 

https://arxiv.org/abs/2004.10934v1


RECENT CNNS: YOLO (BOCHKOVSKIY ET AL.(2020))



YOLO: THE ARCHITECTURE



YOLO: RESULTS



RETI NEURALI
LE RETI RICORRENTI



RECURRENT NEURAL NETWORKS



TRAINING A RNN



TYPES OF RNNS



EXAMPLES: LANGUAGE UNDERSTANDING
HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM

19  |x 178:1 |# BOS      |y 128:1 |# O

19  |x 770:1 |# show     |y 128:1 |# O

19  |x 429:1 |# flights  |y 128:1 |# O

19  |x 444:1 |# from     |y 128:1 |# O

19  |x 272:1 |# burbank |y 48:1  |# B-fromloc.city_name

19  |x 851:1 |# to       |y 128:1 |# O

19  |x 789:1 |# st. |y 78:1  |# B-toloc.city_name

19  |x 564:1 |# louis    |y 125:1 |# I-toloc.city_name

19  |x 654:1 |# on       |y 128:1 |# O

19  |x 601:1 |# monday |y 26:1  |# B-depart_date.day_name

19  |x 179:1 |# EOS      |y 128:1 |# O



EXAMPLES: LANGUAGE UNDERSTANDING
HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM

19  |x 178:1 |# BOS      |y 128:1 |# O

19  |x 770:1 |# show     |y 128:1 |# O

19  |x 429:1 |# flights  |y 128:1 |# O

19  |x 444:1 |# from     |y 128:1 |# O

19  |x 272:1 |# burbank |y 48:1  |# B-fromloc.city_name

19  |x 851:1 |# to       |y 128:1 |# O

19  |x 789:1 |# st. |y 78:1  |# B-toloc.city_name

19  |x 564:1 |# louis    |y 125:1 |# I-toloc.city_name

19  |x 654:1 |# on       |y 128:1 |# O

19  |x 601:1 |# monday |y 26:1  |# B-depart_date.day_name

19  |x 179:1 |# EOS      |y 128:1 |# O

y       "O"        "O"        "O"        "O"  "B-fromloc.city_name"

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Dense |  | Dense |  | Dense |  | Dense |  | Dense |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

+------+   +------+   +------+   +------+   +------+   

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+   +------+   +------+   +------+   +------+   

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Embed |  | Embed |  | Embed |  | Embed |  | Embed |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

x ------>+--------->+--------->+--------->+--------->+------... 

BOS      "show"    "flights"    "from"   "burbank"



EXAMPLES: LANGUAGE UNDERSTANDING
HTTPS://GITHUB.COM/MICROSOFT/CNTK/WIKI/HANDS-ON-LABS-LANGUAGE-UNDERSTANDING

Task: Slot tagging with an LSTM

19  |x 178:1 |# BOS      |y 128:1 |# O

19  |x 770:1 |# show     |y 128:1 |# O

19  |x 429:1 |# flights  |y 128:1 |# O

19  |x 444:1 |# from     |y 128:1 |# O

19  |x 272:1 |# burbank |y 48:1  |# B-fromloc.city_name

19  |x 851:1 |# to       |y 128:1 |# O

19  |x 789:1 |# st. |y 78:1  |# B-toloc.city_name

19  |x 564:1 |# louis    |y 125:1 |# I-toloc.city_name

19  |x 654:1 |# on       |y 128:1 |# O

19  |x 601:1 |# monday |y 26:1  |# B-depart_date.day_name

19  |x 179:1 |# EOS      |y 128:1 |# O

y       "O"        "O"        "O"        "O"  "B-fromloc.city_name"

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Dense |  | Dense |  | Dense |  | Dense |  | Dense |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

+------+   +------+   +------+   +------+   +------+   

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+   +------+   +------+   +------+   +------+   

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Embed |  | Embed |  | Embed |  | Embed |  | Embed |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

x ------>+--------->+--------->+--------->+--------->+------... 

BOS      "show"    "flights"    "from"   "burbank"



APPLICAZIONI DELLE RETI NEURALI
IMMAGINI: IMAGE CLASSIFICATION, OBJECT DETECTION, ENCODING, MAP COLOURING



APPLICAZIONI DELLE RETI NEURALI
TESTI E IMMAGINI: AUTOMATIC CAPTIONING



APPLICAZIONI
IMAGE RETRIEVAL, VISUAL QUESTION ANSWERING



RETI NEURALI: APPLICAZIONI
ESEMPI ILLUSTRI E USE CASE INDUSTRIALI



IMAGE CAPTIONING:  ADVANCED ARCHITECTURES

 Image to captions 

 Convolutional Neural Network to learn a representation of the image

 (Bi-directional) Recurrent Neural Network to generate a caption describing the image

 its input is the representation computed from the CNN

 its output is a sequence of words, i.e. the caption



THE ARCHITECTURE



ATTENTION: A BRODGE BETWEEN VISION AND LANGUAGE



INTEGRATED VISION AND LANGUAGE PROCESSING: 

IMAGE CAPTIONING AND ATTENTION



ESEMPI



NEURAL ENCODING-DECODING FOR DALL-E



Map-building is an emergent phenomenon in the course of AI agents learning to navigate. It explains why we 
can feed neural networks images with no explicit maps and can predict navigation policies.

stateof.ai 2023

● The Emergence of Maps in the Memories of Blind Navigation Agents shows 
that giving an agent knowledge of only ego-motion (change in agent’s 
location and orientation as it moves) and goal location is sufficient to 
successfully navigate to the goal. Note that this agent does not have 
any visual information as input and yet its success rates compared to 
‘sighted’ agents are very similar, only efficiency differs.

● The model doesn’t have any inductive bias towards mapping and is 
trained with on-policy reinforcement learning. The only mechanism 
that explains this ability is the memory of the LSTM.

● It is possible to reconstruct metric maps and detect collisions solely 
from the hidden state of this agent.

#stateofai | 48

The emergence of maps in the memories of blind navigation agents

Introduction | Research | Industry | Politics | Safety | Predictions



DIAGNOSI MALATTIE PEDIATRICHE: UN WORKFLOW ORIENTATO AL ML

da Liang H, et al. “Evaluation and accurate diagnoses of pediatric 

diseases using artificial intelligence”, Nature Medicine, 2019

Dati di 

Laboratorio

Sintomi e 
anamnesi

Referti da 

PACS

Collezoni di linee guida e 

consensi

DB Casi strutturati: 

anagrafica e metadati

1.3 Milioni di EHRs Manuali e documentazioneTecnica

Malattie e descrittori dei

casi clinici storicizzati

Metadatazione

NLP & Deep 

Learning:       

pre-Training

Feature 

Engineering

Evidence-based 

Diagnosis



MEDICAL INFORMATION EXTRAC TION

INPUT:   ‘’Si   osserva una lesione nel lobo superiore sinistro del polmone del paziente ….. ‘’ 



EVIDENCE BASED DIAGNOSIS: RISULTATI (11,926 PAZIENTI)



Possibili rischi
Alcuni gruppi sociali (gli afroamericani) 
hanno maggiori probabilità di essere 
erroneamente etichettati come a rischio più 
elevato rispetto agli altri (i caucasici).
Eticamente ingiusto. 
Obbiettivo: ottenere un sistema equo tra 
gruppi sociali diversi.

Caratteristiche Contiene 7.214 istanze. 

Ogni imputato è descritto da 52 attributi 

(31 categorici, 6 binari, 14 numerici e un 

attributo nullo)

Task L’obiettivo è prevedere se un 

individuo viene nuovamente arrestato 

entro due anni dal primo arresto

https://github.com/propublica/compas-analysis

COMPAS: PROFILING

 COMPAS dataset (Correctional Offender Management 
Profiling for Alternative Sanctions) 

 raccoglie dati nell’ambito della giustizia penale utilizzati 
per prevedere il rischio di recidiva di un imputato. 

 pubblicato da ProPublica nel 2016 sulla base dei dati 
raccolti dalla contea di Broward.
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