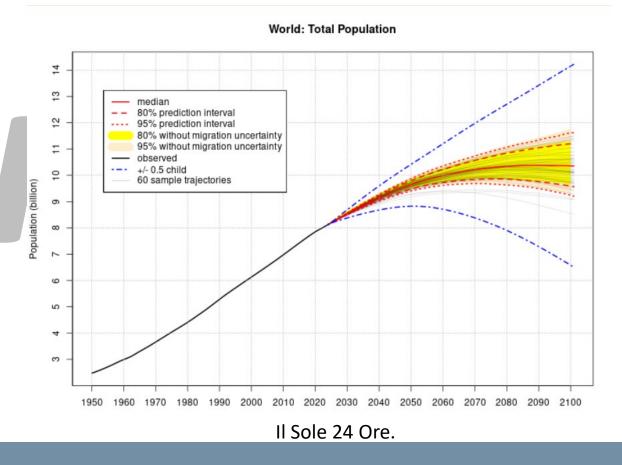


Convegno "Durabilità e sostenibilità dei materiali cementizi"

Progettare materiali cementizi sostenibili e durevoli: i calcestruzzi speciali

Elena Redaelli

9 ottobre 2024


Il calcestruzzo: un materiale da costruzione indispensabile

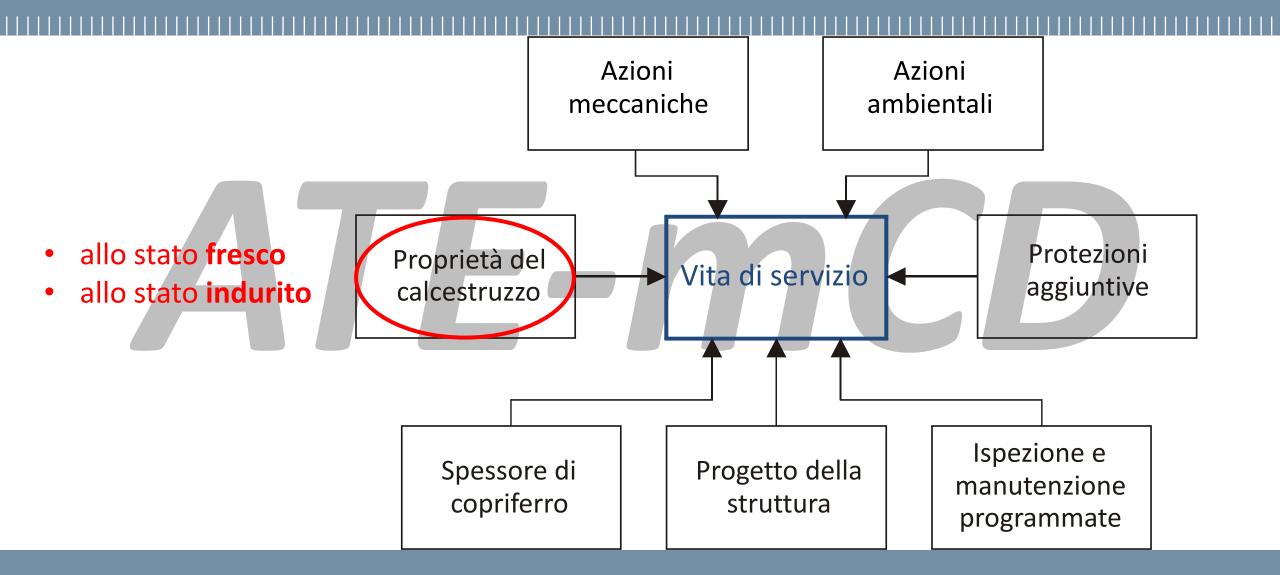
Il calcestruzzo è un materiale economico, versatile, disponibile praticamente ovunque.

Nel 2020 il consumo globale di calcestruzzo è stato di 14 miliardi di m³ (in Italia 30 milioni di m³).

Oggi il calcestruzzo affronta la sfida di continuare a sostenere la crescita e l'urbanizzazione della popolazione mondiale nei prossimi decenni, riducendo le emissioni di CO₂.

Stime di crescita della popolazione mondiale

Prestazioni del calcestruzzo


Degrado del calcestruzzo (attacco solfatico, gelo-disgelo, reazione con aggregati reattivi, attacco acido, ...)

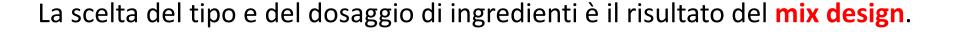
Corrosione delle armature (carbonatazione e penetrazione di cloruri)

Progetto della durabilità

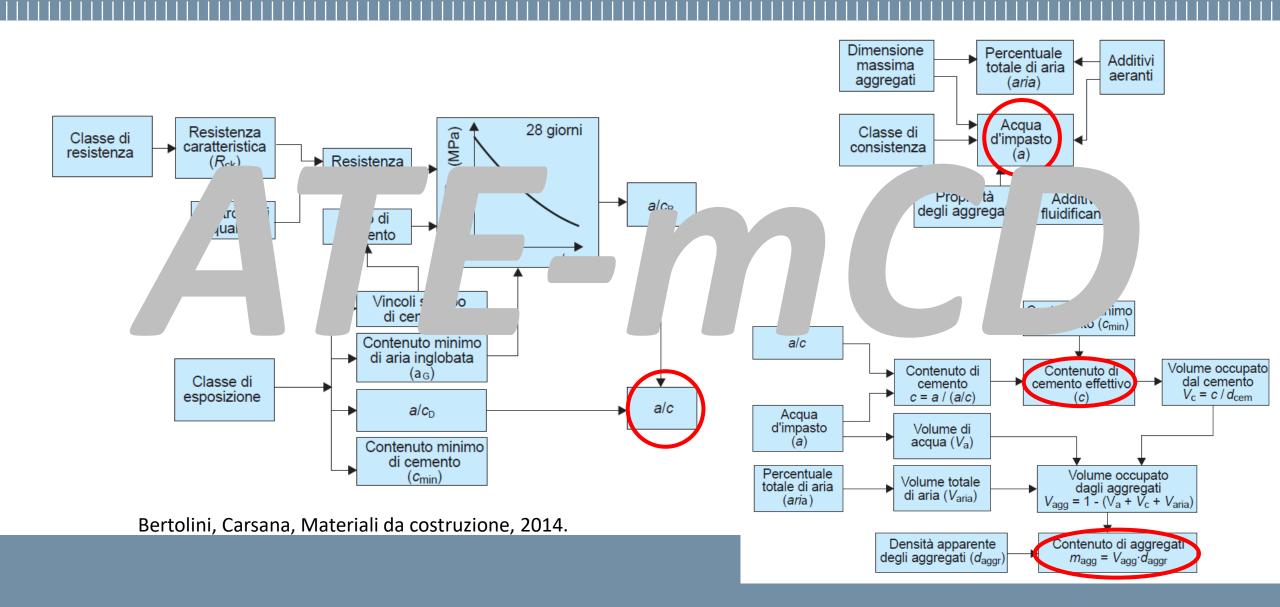
Calcestruzzi ordinari: $R_c = 30-60 \text{ MPa}$ Calcestruzzi ad alte prestazioni: R_c = 80-200 MPa Resistenza a flessione e trazione, tenacità, Resistenza resistenza all'impatto, ... Le **3R**: ridurre il clinker nel cemento ridurre il cemento nel calcestruzzo Durabilità Sostenibilità ridurre il calcestruzzo nelle costruzioni

Progetto della durabilità: fattori

Prescrizioni sul calcestruzzo


Le prescrizioni sul calcestruzzo vengono formulate a prestazione garantita oppure a composizione prescritta.

Le prescrizioni minime consistono in:


Classe at resistenza	•	asse di resistenza	;
----------------------	---	--------------------	---

C30/37

$$D_{max} = 25 \, mm$$

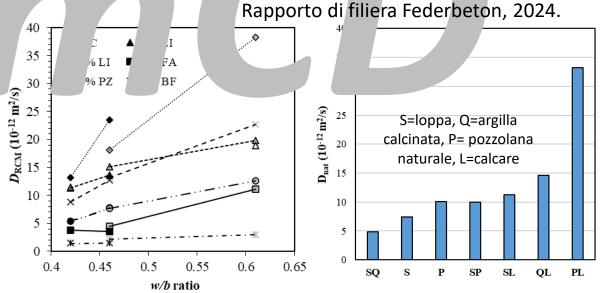
Progetto della miscela (mix design)

Scelta del tipo di cemento

CEM I: Portland

CEM II: Portland con aggiunte (S, D, P, Q, V, W, L)

CEM III: D'altoforno (S)


CEM IV: Pozzolanico (D, P, Q, V, W)

CEM V: Composito (S, P, Q, V)

CEM VI: Composito (S, P, V, L)

+ classe di resistenza (+ resistenza ai solfati)

Dosaggio minimo di cemento

2011 CONTROL OUR NAIL

PERIODICO SULLA TECNOLOGIA DEI MATERIALI DA COSTRUZIONE

Il dosaggio di cemento deve essere $\geq C_{min}$. Questo non significa che aumentare il dosaggio di cemento si traduca in un calcestruzzo migliore.

ii aii cai	coti az	20 111118	511010.	

Classe di esposizione		Descrizione (abbreviata)	Max. a/c	Min. resist. (MPa)	Min. cemento (kg/m³)
1. Nessun rischio	XO	Molto secco	_	C12/15	-
Corrosione da carbonatazione	XC1 XC2 XC3 XC4	Secco o saturo Umido, raram. secco Moderatamente umido Cicli asciutto-bagnato	0.65 0.60 0.55 0.50	C20/25 C25/30 C30/37 C30/37	260 280 280 300
Corrosione da cloruri non da acqua di mare	XD1 XD2 XD3	Moderatamente umido Umido, raram. secco Cicli asciutto-bagnato	0.55 0.55 0.45	C30/37 C30/37 C35/45	300 300 320
Corrosione da cloruri da acqua di mare	XS1 XS2 XS3	Atmosfera marina Sommerso Zone spruzzi e maree	0.50 0.45 0.45	C30/37 C35/45 C35/45	300 320 340

Materials and Structures (2009) 42:973–982 DOI 10.1617/s11527-008-9436-0

ORIGINAL ARTICLE

Minimum cement content requirements: a must or a myth?

R. Wassermann · A. Katz · A. Bentur

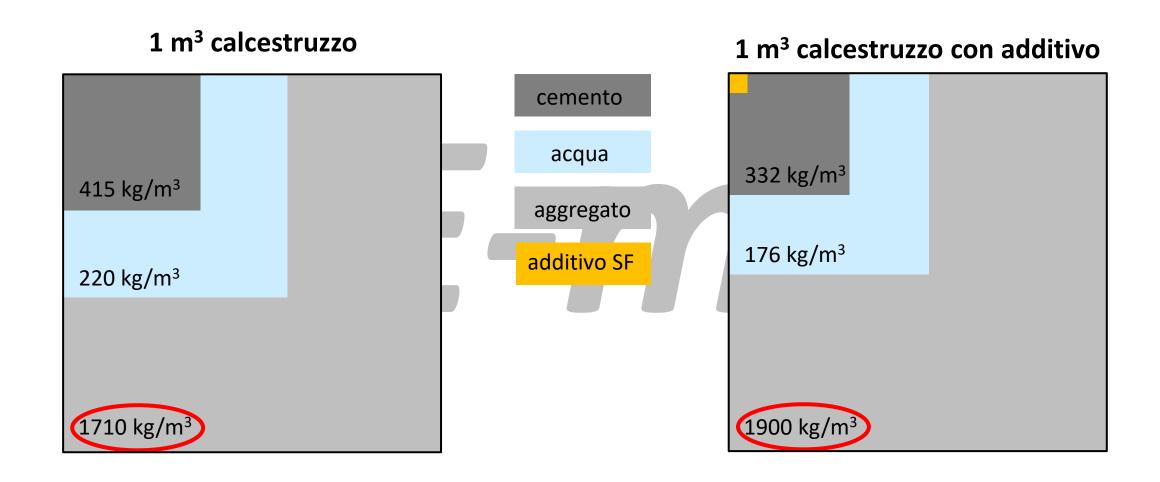
- R_c dipende da a/c, non da c
- assorbimento d'acqua aumenta con c
- penetrazione di cloruri aumenta con c
- carbonatazione dipende da a/c, non da c

Messa in opera

Le proprietà del calcestruzzo dipendono fortemente da diversi aspetti operativi, come per esempio:

- miscelazione e trasporto;
- messa in opera;
- costipazione;
- stagionatura.

Gli additivi


Gli additivi consentono di migliorare le proprietà allo stato fresco e indurito e ridurre l'incidenza di fattori quali le condizioni ambientali, la qualità della manodopera, lo sviluppo del calore di idratazione e il ritiro. Molti degli avanzamenti nella tecnologia del calcestruzzo sono avvenuti grazie allo sviluppo degli additivi.

Tra i più importanti vi sono gli additivi fluidificanti e superfluidificanti, usati per:

- aumentare la lavorabilità;
- diminuire a/c;
- ridurre il dosaggio di cemento a pari a/c.

Altri additivi: acceleranti, ritardanti, aeranti, ritentori d'acqua, modificatori di viscosità, espansivi, inibitori di corrosione, ...

Non dimentichiamo il bilancio volumetrico!

Calcestruzzi speciali

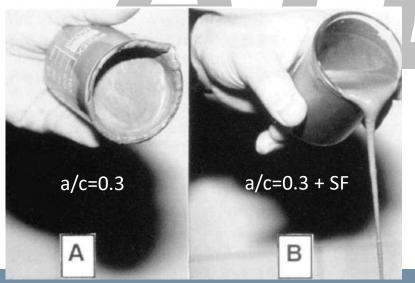
I calcestruzzi speciali differiscono da quelli ordinari per una o più delle seguenti caratteristiche:

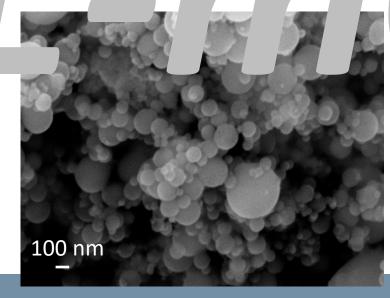
- proprietà allo stato fresco e indurito;
- ingredienti (cemento, aggregati, additivi);
- mix design (prescrizioni);
- messa in opera.

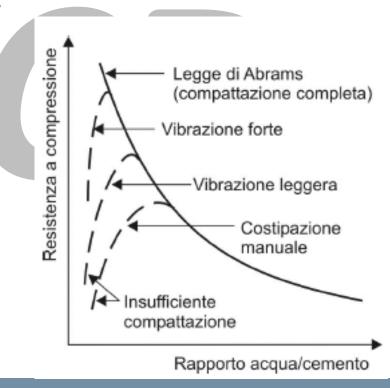
Tra i principali vi sono:

- calcestruzzi ad alte prestazioni → migliore resistenza meccanica;
- calcestruzzi fibrorinforzati → migliore tenacità e resistenza agli urti;
- calcestruzzi autocompattanti → migliore lavorabilità;
- calcestruzzi leggeri → minore densità;

(e loro combinazioni).


Calcestruzzi ad alte prestazioni (High-Performance Concrete, HPC)


Sono nati come calcestruzzi ad alta resistenza (High-Strength Concrete, HSC) e poi si sono evoluti in calcestruzzi HPC. Sono caratterizzati da:


basso rapporto acqua/cemento (< 0.3-0.4), grazie ad additivi SF;

uso di aggiunte minerali (tipicamente fumo di silice);

uso di aggregati speciali (spesso con ridotto D_{max}).

Collepardi, The new concrete, 2006.

Proprietà e applicazioni dei calcestruzzi HPC

L'affinamento della struttura dei pori, ottenuto grazie al basso a/c e all'effetto filler e pozzolanico del fumo di silice, si traduce in:

- alta resistenza a compressione (R_c = 80-100 MPa);
- elevata resistenza alla penetrazione di sostanze aggressive;
- elevato ritiro da auto-essiccamento.

Tipiche composizioni dei calcestruzzi HPC

Miscela	Α	В	С	D	Ε	F	G	Н
Ingredienti (kg/m³)								
 cemento portland 	534	500	315	513	163	228	425	450
- fumo di silice	40	30	36	43	54	46	40	45
- ceneri volanti	59		-	-	-	-	-	-
- loppa d'altoforno			137	-	325	182	-	-
- aggregato fine	623	700	745	685	730	800	755	736
- aggregato grosso	1069	1100	1130	1080	1100	1110	1045	1118
- acqua totale	139	143	150	139	136	138	175	143
Rapporto acqua/legante	0.22	0.27	0.31	0.25	0.25	0.30	0.38	0.29
Slump (mm)	255	-	-	-	200	220	230	230
Resistenza su cilindro (MI	Pa)							
- 1 giorno	-	-	-	-	13	19	-	35
- 2 giorni	-	-	-	65	-	-	-	-
- 7 giorni	-	-	67	91	72	62	-	68
- 28 giorni	-	93	83	119	114	105	95	111
- 56 giorni	124	-	-	-	-	-	-	-
- 3 mesi	-	107	93	145	126	121	105	-
- 1 anno	-	-	-	-	136	126	-	

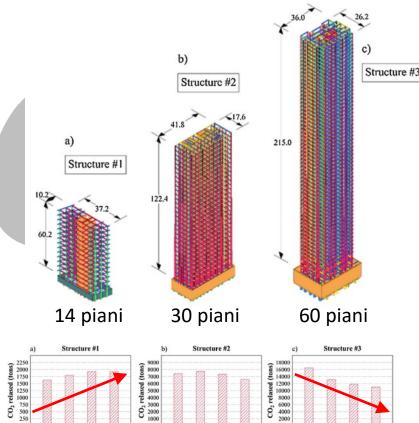
→ possono essere considerati «sostenibili»?

Contents lists available at ScienceDirect

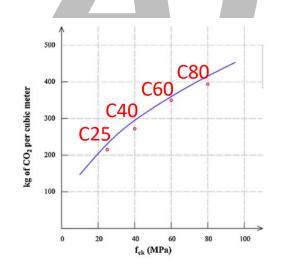
journal homepage: www.elsevier.com/locate/cscm

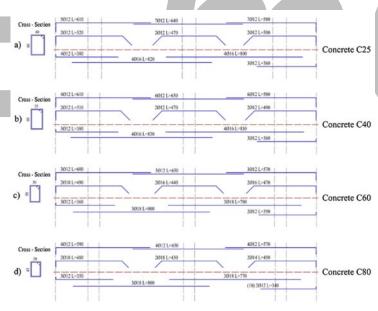
CONSTRUCTION MATERIALS

Case stud


C25 C40 C60

The carbon footprint of normal and high-strength concrete used in low-rise and high-rise buildings

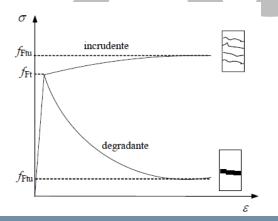

A.P. Fantilli*, O. Mancinelli, B. Chiaia


Politecnico di Torino - DISEG, Corso Duca degli Abruzzi, 24 - 10129, Torino, Italy

Confronto della CO₂ prodotta dai materiali usati per costruire edifici residenziali di diversa altezza, utilizzando calcestruzzi a normale resistenza (NSC, C25 e C40) e alta resistenza (HSC, C60 e C80)

Progettazione strutturale FEM

C25


C40 C60 Concrete class

C25 C40 C60

Calcestruzzi ad altissime prestazioni (UHPC e UHPFRC)

I calcestruzzi UHPFRC sono materiali ad altissime prestazioni caratterizzati da:

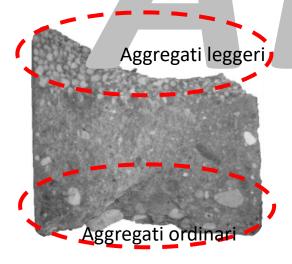
- rapporto acqua/legante ≤ 0.2;
- aggiunte minerali (fumo di silice);
- resistenza a compressione > 120 MPa;
- aggiunta di fibre metalliche;
- comportamento auto-compattante e auto-riparante.

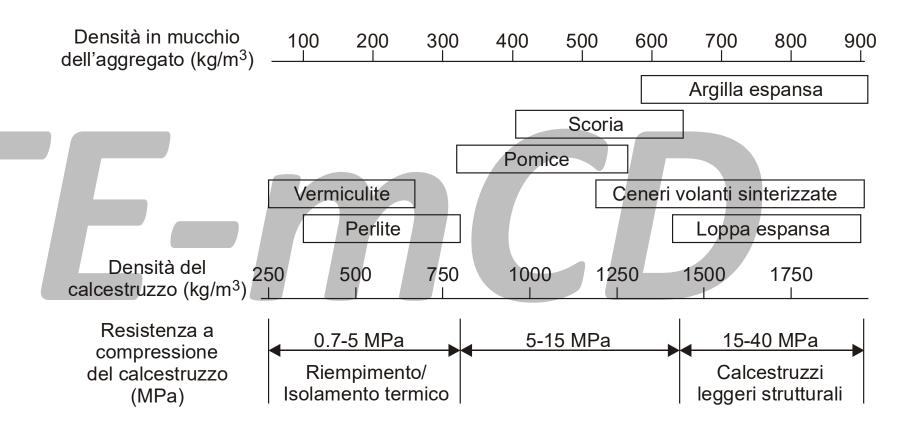
Calcestruzzi leggeri (Light-Weight Concrete, LWC)

Sono calcestruzzi con densità compresa tra 200 kg/m³ e 2000 kg/m³ (calcestruzzi ordinari hanno invece densità di 2300-2400 kg/m³). La bassa densità può essere ottenuta:

- con additivi schiumogeni (calcestruzzi cellulari);
- con aggregati grossi (no-fines concrete o calcestruzzi alveolari);
- con aggregati leggeri (calcestruzzi alleggeriti).

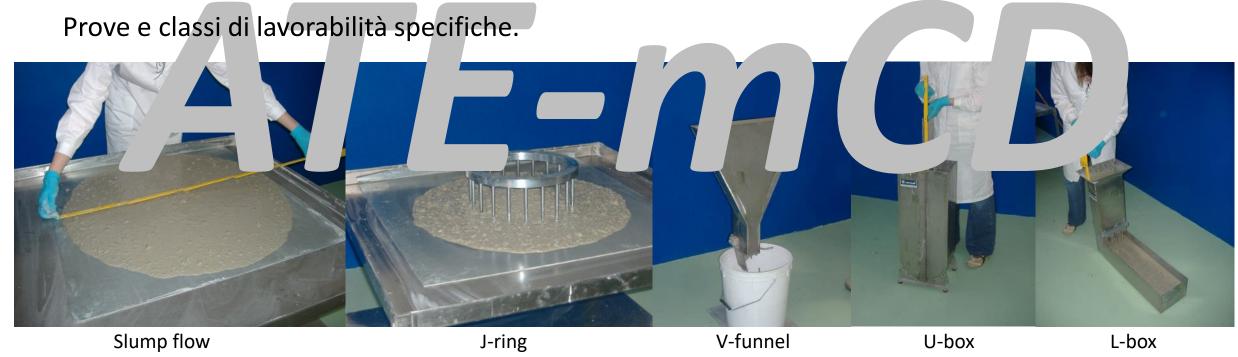
Carsana, RACTSI, 2021.


Carsana et al., ACI Mat


J, 2017. POLITECNICO MILANO 1863

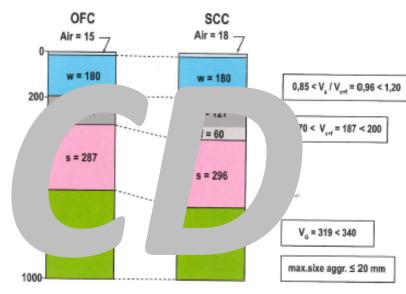
Proprietà e applicazioni dei calcestruzzi LWC

Possibili limitazioni:


- assorbimento d'acqua;
- segregazione da galleggiamento;
- durabilità???

Calcestruzzi autocompattanti (Self-Compacting Concrete, SCC)

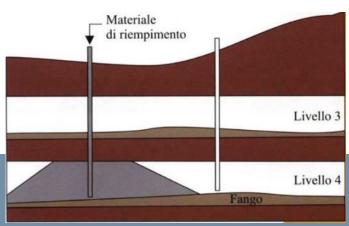
Sono calcestruzzi con altissima lavorabilità (> S5), combinata con elevata resistenza alla segregazione. Hanno elevata mobilità anche in spazi ristretti e non necessitano di compattazione.


Composizione e proprietà dei calcestruzzi SCC

- elevato rapporto V_{matrice}/V_{aggregato}
- ridotto volume e D_{max} aggregato (< 20 mm)
- aggiunta di fini (calcare macinato)

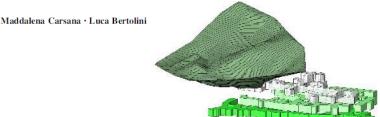
additivo superfluidificante e modificatore di viscosità

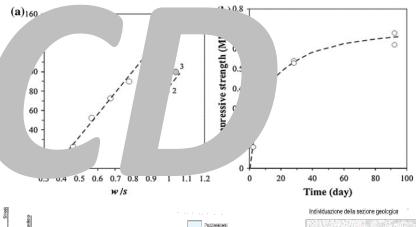
Collepardi, The new concrete, 2006.

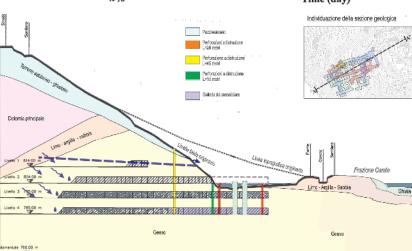

Caso di studio: Ex miniere di gesso di Santa Brigida (BG)

Rischio di dissesto idrogeologico Requisiti del materiale di riempimento:

- accessibilità solo dall'esterno (presenza all'interno di acqua e fango);
- allagamento delle gallerie con acque contenenti solfati;
- proprietà meccaniche paragonabili a quelle di un terreno;
- miscela colabile;
- volumi di riempimento elevati;
- costi ridotti.






Materials and Structures (2012) 45:53-65 DOI 10.1617/s11527-011-9748-3

ORIGINAL ARTICLE

Fluidized soil-cement mixes for backfilling of flooded cavities

Grazie dell'attenzione!

elena.redaelli@polimi.it

